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Logistics

• Fall 2025 Student Evaluations of Teaching were sent
• Completion rate as of today:

• 58% 

• 65%

• Exam recitation session: next Monday evening (exact time TBD)

• Compensation Lecture:
• Next Thursday (Dec. 11, 11am – 1pm, on zoom), after exam 

(hence exam will not cover questions there)

• Will cover training 



Connecting the Dots: Compute/Comm characteristic of 

LLMs

Key characteristics: compute, memory, communication

• calculate the number of parameters of an LLM?

• calculate the flops needed to train an LLM?

• calculate the memory needed to train an LLM?



Large Language Models

• Transformers, Attentions

• Serving and inference

• Parallelization

• Attention optimization 
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Inference process of LLMs
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Repeat until the sequence

● Reaches its pre-defined maximum length (e.g., 2048 tokens)

● Generates certain tokens (e.g., “<|end of sequence|>”)



Generative LLM Inference: Autoregressive Decoding

•Pre-filling phase (0-th iteration):
•Process all input tokens at once

•Decoding phase (all other iterations):
•Process a single token generated from previous 

iteration

•Key-value cache:
•Save attention keys and values for the following 

iterations to avoid recomputation
•what is KV cache essentially?



w/ KV Cache vs. w/o KV Cache



w/ KV Cache vs. w/o KV Cache

Q1:whathappensonKVcacheinprefillphase?

Q2:DoweneedtocacheQ?



Potential Bottleneck of LLM Inference?

• Compute:
• Prefill: largely same with training

• Decode: s = 1

• Memory

• New: KV cache

• Communication
• mostly same with training

Q?howaboutbatchsizeb?



Serving vs. Inference

Serving: many requests, online 

traffic, emphasize cost-per-query.

s.t. some mild latency constraints

emphasize throughput

Inference: fewer request, 

low or offline traffic,

emphasize latency

largeb b=1



Potential Bottleneck of LLM Inference in Serving

• Compute:
• Prefill:

• Different prompts have different length: how to batch?
• Decode

• Different prompts have different, unknown #generated tokens
• s = 1, b is large

• Memory
• New: KV cache
• b is large -> KV is linear with b -> will KVs be large?

• Communication
• mostly same with training

largeb
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Problems of bs = 1

max AI = #ops / #bytes
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Recap: Inference process of LLMs
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Repeat until the sequence

● Reaches its pre-defined maximum length (e.g., 2048 tokens)

● Generates certain tokens (e.g., “<|end of sequence|>”)



Problem of bs = 1

Latency = step latency * # steps 

b=1

Speculativedecodingreducesthis,henceamortizethe

memorymovingcost(but itmayincreasecomputecost)



Large Language Models

Serving and inference optimization

• Continuous batching

• Paged attention

• Speculative decoding (in reading)

largeb



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

LLM Decoding Timeline
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Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Batching Requests to Improve GPU Performance

Issues with static batching:

• Requests may complete at different iterations

• Idle GPU cycles

• New requests cannot start immediately
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Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching

Benefits:

• Higher GPU utilization

• New requests can start immediately

19Orca: A Distributed Serving System for Transformer-Based Generative Models. OSDI’22



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching Step-by-Step

• Receives two new requests R1 and R2
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Request Pool

(CPU)

Execution Engine

(GPU)

R1: optimizing ML 

systems

R2: LLM serving is

Maximum serving batch 

size = 3



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching Step-by-Step

• Iteration 1: decode R1 and R2
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R1: optimizing ML 

systems

R2: LLM serving is

Iteration 1

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 

size = 3



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching Step-by-Step

• Iteration 1: decode R1 and R2

22

R1: optimizing ML 

systems

R2: LLM serving is

Iteration 1

Execution Engine

(GPU)

Maximum serving batch 

size = 3

Q:Howtobatchthese?



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching Step-by-Step

• Receive a new request R3; finish decoding R1 and R2
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R1: optimizing ML 

systems requires

R2: LLM serving is 

critical.

Iteration 1

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 

size = 3



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching Step-by-Step

• Receive a new request R3; finish decoding R1 and R2
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R1: optimizing ML 

systems requires

R2: LLM serving is 

critical.

Iteration 1

Execution Engine

(GPU)

Maximum serving batch 

size = 3

Q:Howtobatchthese?



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Traditional Batching

• Receive a new request R3; finish decoding R1 and R2
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R2: LLM serving is 

critical. <EOS>

Iteration 2

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 

size = 3

R1: optimizing ML 

systems requires ML
R4: A dog is

R5: How are



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching

• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes 
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R1: optimizing ML 

systems requires ML

R2: LLM serving is 

critical. <EOS>

Iteration 2

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 

size = 3
R4: A dog is

R5: How are



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching

• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes 
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R1: optimizing ML 

systems requires ML

R2: LLM serving is 

critical. <EOS>

Iteration 2

R3: A man

Execution Engine

(GPU)

Maximum serving batch 

size = 3

Q:Howtobatchthese?



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Traditional vs. Continuous Batching

• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes 
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R1: optimizing ML 

systems requires ML

R2: LLM serving is 

critical. <EOS>

Iteration 2

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 

size = 3
R4: A dog is

R5: How are

R2: LLM serving is 

critical. <EOS>

Execution Engine

(GPU)

Maximum serving batch 

size = 3

R1: optimizing ML 

systems requires ML

R3: A man



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching

• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes 
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R1: optimizing ML 

systems requires ML

R2: LLM serving is 

critical. <EOS>

Iteration 2

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 

size = 3
R4: A dog is

R5: How are



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching Step-by-Step

• Iteration 3: decode R1, R3, R4
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Iteration 3

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 

size = 3

R1: optimizing ML 

systems requires ML

R3: A man is

R4: A dog is

R5: How are
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Summary: Continuous Batching

• Handle early-finished and late-arrived requests more efficiently

• Improve GPU utilization

• Key observation

• MLP kernels are agnostic to the sequence dimension



KV Cache
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KV Cache
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KV Cache

• Memory space to store intermediate vector representations of tokens

• Working set rather than a “cache”

• The size of KV Cache dynamically grows and shrinks

• A new token is appended in each step

• Tokens are deleted once the sequence finishes
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Key insight

Efficient management of KV cache is crucial for high-throughput 

LLM serving

13B LLM on A100-40GB

Parameters 

(26GB, 65%)

KV Cache
(13GB, 33%)

Others

40

26

Existing systems vLLM

8 40
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Key insight

Efficient management of KV cache is crucial for high-throughput 

LLM serving

13B LLM on A100-40GB

Parameters 

(26GB, 65%)

KV Cache
(13GB, 33%)

Others

40

26

Existing systems vLLM

8 40

0.8

3.2
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Memory waste in KV Cache

• Reservation: not used at the current step, but used in the future

• Internal fragmentation: over-allocated due to the unknown 

output length.

Artificial
Intellige

nce
is the future of

technol

ogy
<eos> <resv> … <resv> … …

2040 slots never used 

(internal fragmentation)

3 slots future used

(reserved)

External 

fragmentation

3 token states for 

request A’s prompt
Request A

current step

2 slots for

generated tokens

LLM is …

Request B
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Memory waste in KV Cache

Only 20–40% of KV cache is utilized to store token states

Ours

* Yu, G. I., Jeong, J. S., Kim, G. W., Kim, S., Chun, B. G. “Orca: A Distributed Serving System for Transformer-Based 

Generative Models” (OSDI 22).



vLLM: Efficient memory management for LLM inference

Inspired by virtual memory and paging
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Token block

• A fixed-size contiguous chunk of 

memory that can store token states 

from left to right

Token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Block size = 4

KV Cache
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Token block

• A fixed-size contiguous chunk of memory that can store token 

states from left to right

Artificial Intelligence is the

Token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Block size = 4

-0.2 0.1 -1.1

0.9 0.7 0.2

-0.1 -0.3 0.1

Artificial

Intelligence

is

-1.1 0.5 0.4the

Block 4

820 KB / token

(LLaMA-13B) 
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Paged Attention

• An attention algorithm that allows for storing continuous keys 

and values in non-contiguous memory space
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Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0
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block 3

Physical token blocks

(KV Cache)
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block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks
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Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0
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block 3
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Alan Turing is a

Physical token blocks
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block 0
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block 2

block 3
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block 5
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block 7

Logical token blocks
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block number
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7 4

1 2

– –

– –

Block table
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Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3
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Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

Physical

block number
# Filled

7 4

1 2

– –

– –

Block table

Completion: “and”
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Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist and

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3
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block 5

block 6

block 7

Logical token blocks

Physical

block number
# Filled

7 4

1 2

– –

– –

Block table

Completion: “and”
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Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist and

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and

Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

Physical

block number
# Filled

7 4

1 3

– –

– –

Block table

Completion: “and”
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Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist and
mathema

tician

Prompt: “Alan Turing is a computer scientist”
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block 3
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block 5

block 6

block 7
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Physical

block number
# Filled

7 4

1 4

– –

– –

Block table

Completion: “and mathematician”
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Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist and
mathema

tician

renowned

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and
mathem

atician
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Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1
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block 7

Logical token blocks

Physical

block number
# Filled

7 4

1 4

5 1

– –

Block table

Completion: “and mathematician renowned”

Allocated on demand



Serving multiple requests

Alan Turing is a

computer scientist and
mathema

tician

renowned

Logical token blocks

Request

A

Block Table

computer scientist and
mathem

atician

Artificial
Intellige

nce
is the

renowned

future of
technolog

y

Alan Turing is a

Physical token blocks

(KV Cache)

Artificial Intelligence is the

future of technology

Logical token blocks

Request

B

Block Table



Memory efficiency of vLLM 

• Minimal internal fragmentation

• Only happens at the last block of a sequence

• # wasted tokens / seq < block size

• Sequence: O(100) – O(1000) tokens

• Block size: 16 or 32 tokens

• No external fragmentation
Alan Turing is a

computer scientist and
mathemati

cian

renowned

Internal fragmentation



Effectiveness of PagedAttention

96.3% KV cache utilization

Ours



Other Inference Techniques

• Speculative Decoding

• Disaggregated Serving

• Prefix caching

• Chunked prefill
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