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LOoQistiCS

* Fall 2025 Student Evaluations of Teaching were sent
* Completion rate as of today:
* 58%
* 65%
* Exam recitation session: next Monday evening (exact time TBD)
* Compensation Lecture:
* Next Thursday (Dec. 11, 1Tam - Tpm, on zoom), after exam
(hence exam will not cover questions there)
* Will cover training



Connecting the Dots: Compute/Comm characteristic of

LLMS

Key characteristics: compute, memory, communication

* calculate the number of parameters of an LLM?¢
®* calculate the flops needed to train an LLM¢

®* calculate the memory needed to train an LLM?¢
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Large Language Modaels

® Transformers, Attentions
* Serving and inference
® Parallelization

* Attention optimization



INnference process of LLMs

Output the future of
Layer N Layer N Layer N
Layer 1 Layer 1 Layer 1
—r—

Input Artificial Intelligence is 1 the 1 future

Repeat until the sequence
Reaches its pre-defined maximum length (e.g., 2048 tokens)
Generates certain tokens (e.g., "<|end of sequence|>")



Generative LLM Inference: Autoregressive Decoding

* Pre-filling phase (O-th iteration):
®* Process all input tokens at once
* Decoding phase (all other iterations):
®* Process a single token generated from previous
Iteration

®* Key-value cache:
® Save atftention keys and values for the following
iteraftions to avoid recomputation
* what is KV cache essentiallye
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w/ KV Cache vs. w/o KV Cache

Step 1 '
Q KT QKT Y, Attention
Query Token 1 ~ Q,K, Value Token 1 Token 1
s S
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Potential Bottleneck of LLM Inference®@¢
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* Compute:
* Prefill: largely same with fraining
®* Decode:s =1
* Memory
* New: KV cache
* Communication
* mostly same with training
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Serving vs. Inference

large b b="1

olOry
o

Serving. many requests, online Inference: fewer request,
traffic, emphasize cost-per-query. low or offline traffic,
s.t. some mild latency constraints emphasize latency

emphasize throughput
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* Compute:
* Prefill:

* Different prompts have different length: how to batche
* Decode

* Different prompts have different, unknown #generated tokens
* s=1,bislarge
* Memory
* New: KV cache

* pbislarge -> KV is linear with b -> will KVs be large®e
* Communication

* mostly same with training




Potential Boftleneck of LLM Inference Iin Serving
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Problems of bs = 1

|
max Al = Hops / #Hbytes



Recap: Inference process of LLMs

Output the future of
Layer N Layer N Layer N
Layer 1 Layer 1 Layer 1
—r—

Input Artificial Intelligence is 1 the 1 future

Repeat until the sequence
Reaches its pre-defined maximum length (e.g., 2048 tokens)
Generates certain tokens (e.g., "<|end of sequence|>")



Problem of bs = 1

Latency = step latency ™ # steps

/

Speculative decoding reduces this, hence amortize the
memory moving cost (but it may increase compute cost)



large b
Large Language Modaels

Serving and inference optimization
* Continuous batching

* Paged attention



LLM Decoding Timeline

EEE

] e ]

17



Batching Requests to Improve GPU Performance

Issues with static batching:
» Requests may complete at different iterations

* |dle GPU cycles
* New requests cannot start immmediately

18



Continuous Batching

Benefits:
* Higher GPU utilization
* New requests can start immediately

Orca: A Distributed Serving System for Transformer-Based Generative Models. OSDI'22

19



Continuous Batching Step-by-Step

» Recelves two new requests R1 and R2

R1: optimizing ML
systems

R2: LLM serving is

Request Pool
(CPU)

Execution Engine
(GPU)

20



Continuous Batching Step-by-Step

 [teration 1: decode R1 and R2

Request Pool
(CPU)

R1: optimizing ML
systems

R2: LLM serving is

Execution Engine
(GPU)

C

lteration 1

21



Continuous Batching Step-by-Step

e [teration 1: decode R1 and R2
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Q: How to batch these?

Maximum seyrving batch
size = 3

R1: optimizing ML
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Continuous Batching Step-by-Step

» Receive a new request R3; finish decoding R1 and R2

Maximum serving batch
size = 3

R1: optimizing ML
systems

R2: LLM serving Is

Request Pool Execution Engine
(CPU) (GPU)

C

lteration 1
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Continuous Batching Step-by-Step
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Q: How to batch these?

» Receive a new request R3; finish decoding R1 and R2

Maximum serving/batch
size = 3

R1: optimizing ML

systems requires

R2: LLM serving is

critical.

Execution Engine
(GPU)

C

lteration 1



Traditional Batching

» Receive a new request R3; finish decoding R1 and R2

Maximum serving batch
size = 3

R1: optimizing ML

R4:Adogis _
systems requires ML

R2: LLM serving is

R5: How are
critical. <EOS>

Request Pool Execution Engine
(CPU) (GPU)

C

lteration 2

25



Continuous Batching

* |teration 2: decode R1, R2, R3; receive R4, R5; R2 completes

Maximum serving batch

R4: A dog is Size =3

R1: optimizing ML
systems requires ML

R2: LLM serving is

critical. <EOS>

Request Pool Execution Engine
(CPU) (GPU)

C

lteration 2
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Continuous Batching
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Q: How to batch these?
* |teration 2: decode R1, R2, R3; receive R4, R5; R2 complete

Maximum serving batch
size = 3

R1: optimizing ML
systems requires ML

R2: LLM serving is

critical. <EOS>

Execution Engine
(GPU)

C

lteration 2



Traditional vs. Continuous Batching

* |teration 2: decode R1, R2, R3; receive R4, R5; R2 completes

Maximum serving batch Maximum serving batch
size = 3 size = 3

R4: Adogis

R1: optimizing ML

systems requires ML .
R1: optimizing ML

systems requires ML
R2: LLM serving is

critical. <EOS>

R2: LLM serving is

critical. <EOS>

Request Pool Execution Engine  Execution Engine
(CPU) (GPU) (GPU)

C

lteration 2
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Continuous Batching

* |teration 2: decode R1, R2, R3; receive R4, R5; R2 completes

Maximum serving batch

R4: A dog is Size =3

R1: optimizing ML
systems requires ML

R2: LLM serving is

critical. <EOS>

Request Pool Execution Engine
(CPU) (GPU)

C

lteration 2

29



Continuous Batching Step-by-Step

 |[teration 3: decode R1, R3, R4

R5: How are

Request Pool
(CPU)

Maximum serving batch
size = 3

R1: optimizing ML
systems

R4: Adogis

Execution Engine
(GPU)

C

lteration 3

30



Summary: Continuous Batching

* Handle early-finished and late-arrived requests more efficiently
* Improve GPU utilization
®* Key observation

* MLP kernels are agnostic to the sequence dimension



KV Cache

Output the future
Layer N Layer N
——————————————————————————— —\\
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KV Cache

* Memory space to store infermediate vector representations of tfokens

* Working set rather than a “cache”

®* The size of KV Cache dynamically grows and shrinks

* A new token is appended in each step

®* Tokens are deleted once the sequence finishes
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Key insight

Efficient management of KV cache is crucial for high-throughput

LLM serving
. Existing systems — vLLM
¢
)
O)
®
KV Cache 5
Parameters (13GB, 33%) %’
(26GB, 65%) =
= Param. 3 4IO |
size Batch size (# requests)

Others

13B LLM on A100-40GB



Key insight

Efficient management of KV cache is crucial for high-throughput

LLM servin
3 . Existing systems — vLLM
o
)
S
KV Cache 5
Parameters (13GB, 33%) -
(26GB, 65%) =
=
T
Others §§
o) 0
13B LLM on A100-40GB > ©
< 0.8

Batch size (# requests) 40



Memory waste In KV Cache

2 slots for
generated tokens

N

3 slots future used

(reserved)
N

- A
Artificial Intellige IS the future
nce
7
v |
3 token states for Request A

request A's prompt

current step

of

technol
ogy

<eosS-> <resv>

N )

2040 slots never used
(internal fragmentation)

External
fragmentation

~

LLM

IS

~
Request B

® Reservation: not used at the current step, but used In the future

* Internal fragmentatfion: over-allocated due to the unknown

output length.




Memory waste In KV Cache

. Internal External
B Token states ™ Reservation & fragmentation fragmentation
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Orca Orca Orca Ours
(Max) (Pow2) (Oracle)

Only 20-40% of KV cache is utilized to store token states

*Yu, G. 1., Jeong, J. S., Kim, G. W.,, Kim, S., Chun, B. G. "Orca: A Distributed Serving System for Transformer-Based
Generative Models™ (OSDI 22).



VLLM: Efficient memory management for LLM inference

Inspired by virtual memory and paging

Memory management in OS Memory management in vLLM
Page O Token Block O
Process Page 1 Process Request Token Block 1 Request
A Page 2 B A Token Block 2 B
Page 3 Token Block 3
Page 4 Token Block 4
Physical Memory KV Cache




Token block

* A fixed-size contiguous chunk of
memory that can store token states

from left to right

block O

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Token blocks
(KV Cache)

KV Cache

-~
Block size

1
1N




Token block

* A fixed-size configuous chunk of memory that can store token

Token blocks

states from left to right (KV Cache)
block O
block 1
block 2
Block 4 block 3
Artificial | -0.2 0.1 11 | 4 o0k 4
Intelligence| 0.9 0.7 0.2
i 0.1 0.3 0.1 block 5| Artificial |Intelligence IS the
the -1.1 0.5 0.4
N ) block 6
Y
820 KB / token
(LLaMA-13B) block 7
N
y
Block size = 4




Paged Atftention

* An attention algorithm that allows for storing continuous keys

and values In hon-contiguous memory space

Key and value vectors

mathe-

Block 1 |computer| scientist and .
matician

Block 2 renowned for
Query

vector

for

Block 0 | Alan Turing IS a




block 0

block 1

block 2

block 3

Logical & physical token blocks

Prompt: “Alan Turing is a computer scientist”

Request

A

Logical token blocks

Alan

Turing

IS

computer

scientist

block O

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Physical token blocks
(KV Cache)




Logical & physical token blocks

Physical token blocks
(KV Cache)

Request block 0
A

block 1 | computer | scientist

Prompt: “Alan Turing is a computer scientist”

block 2

Logical token blocks Block table block 3

block O Alan Turing IS a \ bIO'ZEynSL(ﬁLer # Filled block 4
7 4

block 1 | computer | scientist block 5
T 1 2

block 2 — — block 6

block 3 block 7| Alan Turing is




Logical & physical token blocks

Physical token blocks
(KV Cache)

Request block 0
A

block 1 | computer | scientist

Prompt: “Alan Turing is a computer scientist”

Completion: “and’ block 2

Logical token blocks Block table block 3

block 0| Alan Turing is a \ bIO'ZEynSL(ﬁLer # Filled block 4

block 1 | computer | scientist ~_ : ;1 block 5

block 2 - - block 6
block 3 - : block 7| Alan Turing iS




Logical & physical token blocks

Physical token blocks
(KV Cache)

Request block 0
A

block 1 | computer | scientist

Prompt: “Alan Turing is a computer scientist”

Completion: “and’ block 2

Logical token blocks Block table block 3

block 0| Alan Turing is a \ bIO'ZEynSL(ﬁLer # Filled block 4

block 1 | computer | scientist and ~_ : ;1 block 5

block 2 - - block 6
block 3 - : block 7| Alan Turing iS




Logical & physical token blocks

Physical token blocks
(KV Cache)

Request block 0

A
block 1| computer scientist-

Prompt: “Alan Turing is a computer scientist”
Completion: “and” block 2
Logical token blocks Block table block 3
. : Physical :
block O Alan Turing IS a \ block number | Filled block 4
7 4
block 1 | computer | scientist - block 5
T 1 3
block 2 = - block 6
block 3 block 7| Alan Turing is




Logical & physical token blocks

Physical token blocks
(KV Cache)

Request block 0
A

mathem

block 1| computer | scientist| and .
atician

Prompt: “Alan Turing is a computer scientist”

Completion: “and mathematician” block 2

Logical token blocks Block table block 3

block 0| Alan Turing is a \ bIO'ZEynSL(ﬁLer # Filled block 4

block 1 | computer | scientist and mf:gi]:rr]na\ : j block 5

block 2 - - block 6
block 3 : - block 7| Alan Turing is a




Logical & physical token blocks

Request
A

Completion: “and mathematician renowned”

block 0

block 1

block 2

block 3

Logical token blocks

Prompt: “Alan Turing is a computer scientist”

RN
—
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L mathema
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Physical .
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_______
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Serving multiple requests

Request
A

Block Table

Logical token blocks

Alan Turing IS a
L mathema

computer | scientist and .
tician

Physical token blocks

Block Table

Request
B

Logical token blocks

Artificial

Intelligence

future

o ooty

(KV Cache)
L mathem
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. . | Intellige .
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nce
future
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Memory efficiency of VvLLM

* Minimal internal fragmentation
* Only happens at the last block of a sequence
* # wasted tokens / seq < block size

®* Seqgquence: O(100) — O(1000) tokens

® Block size: 16 or 32 tokens

. Alan Turing IS a
®* No external fragmentation e
computer scientist and cian
renowned
N J
Y

Internal fragmentation



Effectiveness of PagedAttention

. Internal External
B Token states ™8 Reservation Il fragmentation fragmentation

100 -
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O 40 -

©
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Orca Orca Orca Ours
(Max) (Pow2) (Oracle)

96.3% KV cache utilization



Other Inference Technigues

* Speculative Decoding
®* Disaggregated Serving
®* Prefix caching

* Chunked pretfill
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