

<https://hao-ai-lab.github.io/dsc204a-f25/>

DSC 204A: Scalable Data Systems

Fall 2025

Staff

Instructor: Hao Zhang

TAs: Mingjia Huo, Yuxuan Zhang

 [@haozhangml](https://twitter.com/haozhangml)

 [@haoailab](https://twitter.com/haoailab)

 haozhang@ucsd.edu

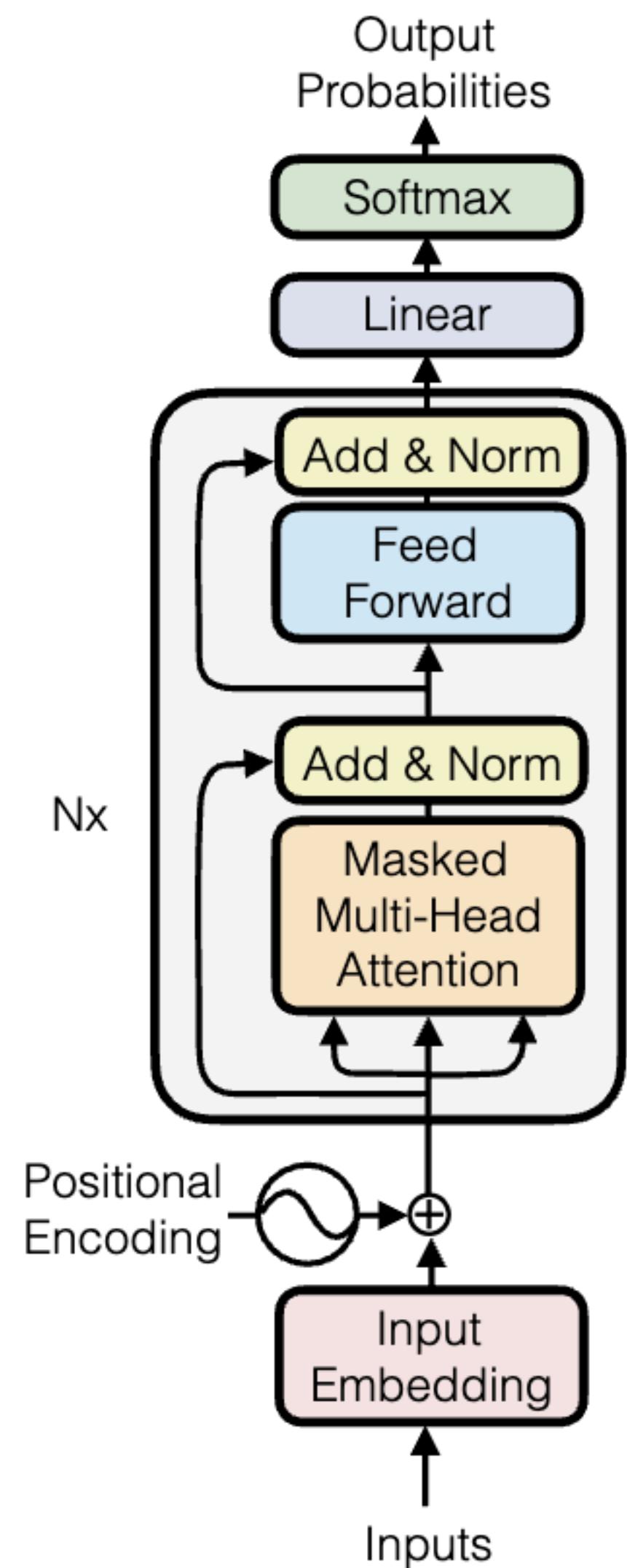
Logistics

- Fall 2025 Student Evaluations of Teaching were sent
 - Completion rate as of today:
 - ~~58%~~
 - 65%
- Exam recitation session: next Monday evening (exact time TBD)
- Compensation Lecture:
 - Next Thursday (Dec. 11, 11am – 1pm, on zoom), after exam (hence exam will not cover questions there)
 - Will cover training

Connecting the Dots: Compute/Comm characteristic of LLMs

Key characteristics: compute, memory, communication

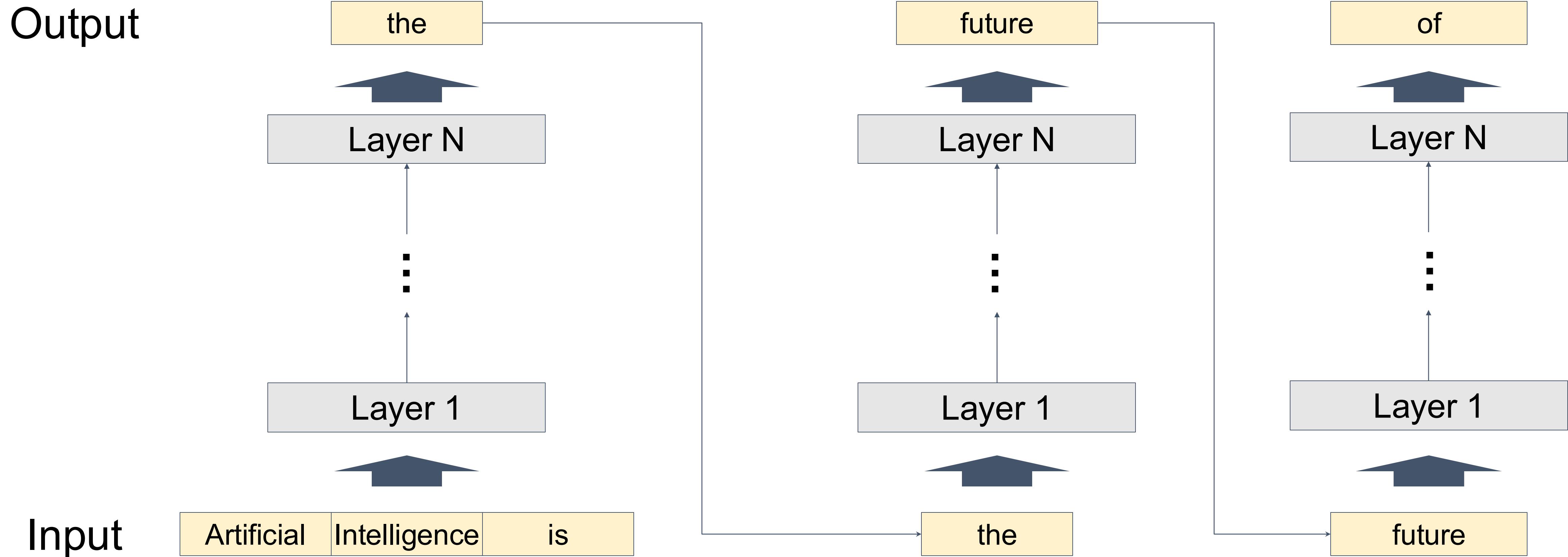
- calculate the number of parameters of an LLM?
- calculate the flops needed to train an LLM?
- calculate the memory needed to train an LLM?



Large Language Models

- Transformers, Attentions
- **Serving and inference**
- Parallelization
- Attention optimization

Inference process of LLMs



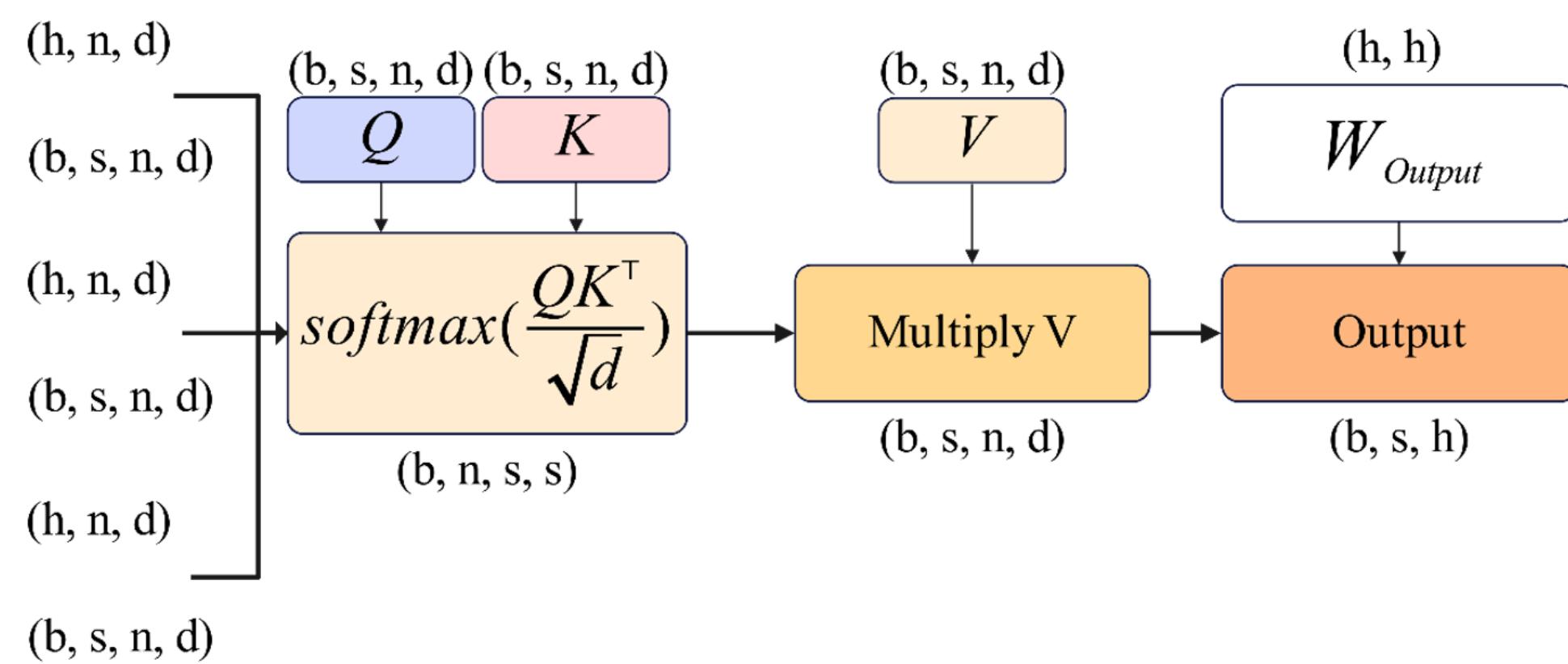
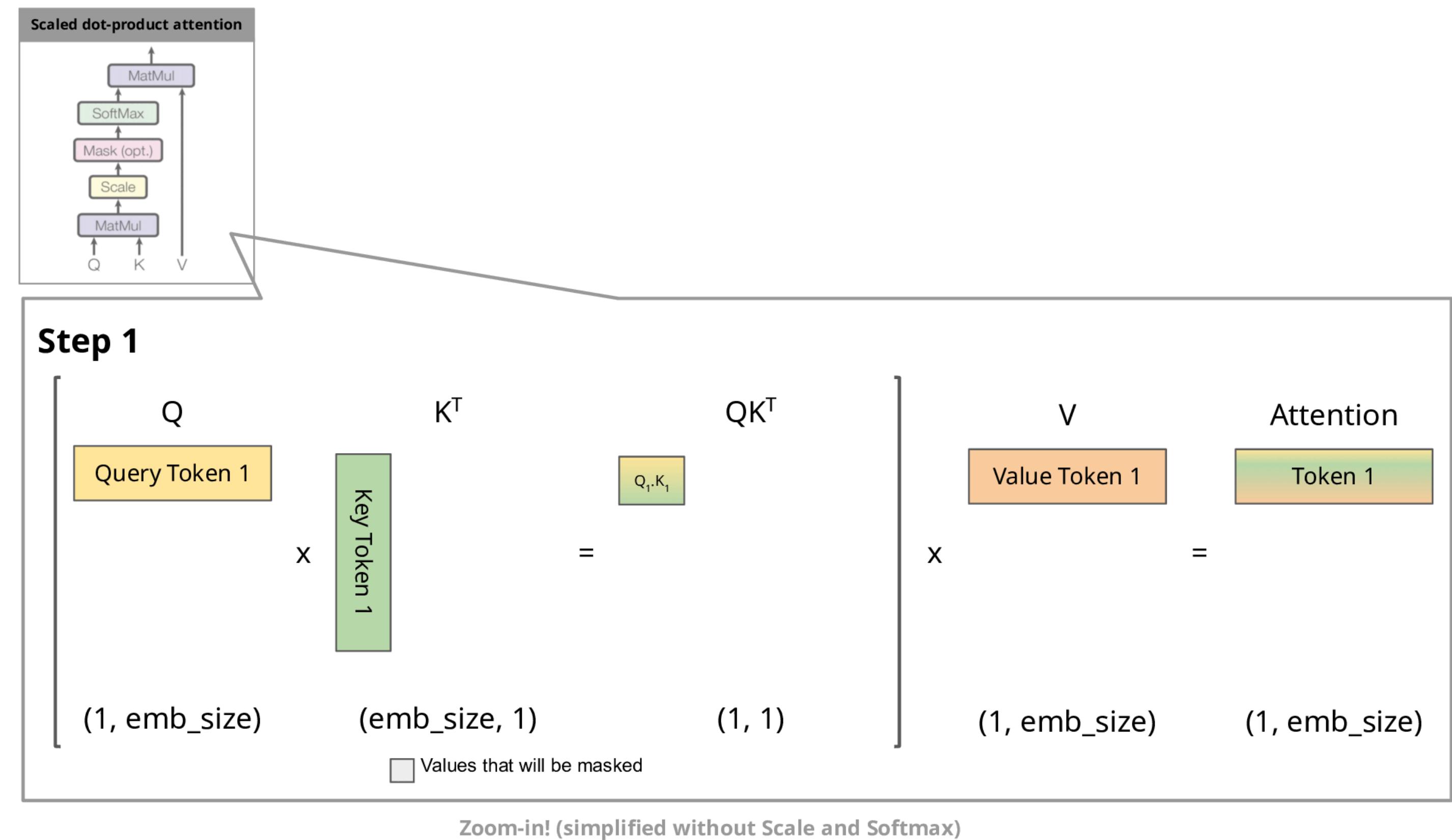
Repeat until the sequence

- Reaches its pre-defined maximum length (e.g., 2048 tokens)
- Generates certain tokens (e.g., "<|end of sequence|>")

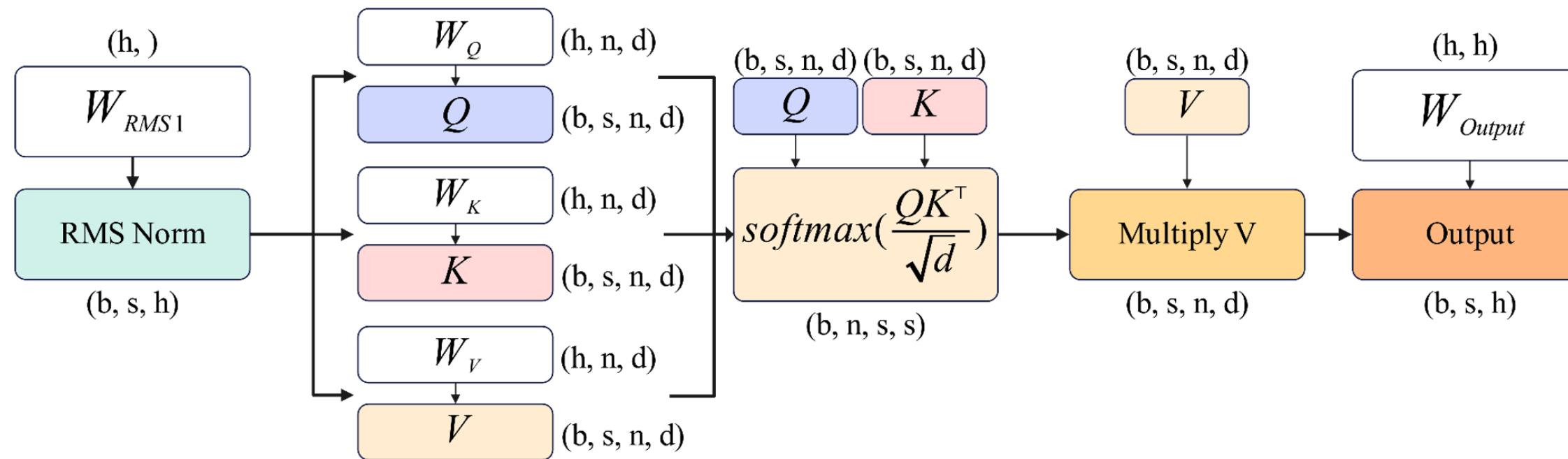
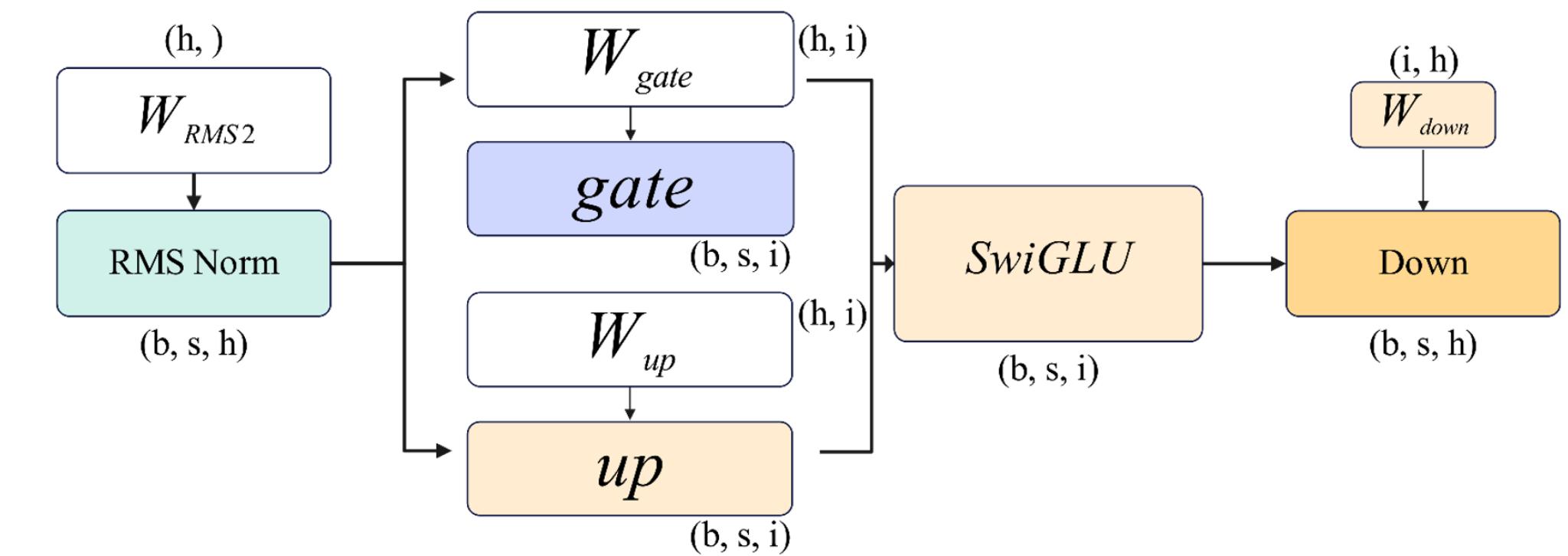
Generative LLM Inference: Autoregressive Decoding

- Pre-filling phase (0-th iteration):
 - Process all input tokens at once
- Decoding phase (all other iterations):
 - Process a single token generated from previous iteration
- Key-value cache:
 - Save attention keys and values for the following iterations to avoid recomputation
 - what is KV cache essentially?

w/ KV Cache vs. w/o KV Cache



Potential Bottleneck of LLM Inference?

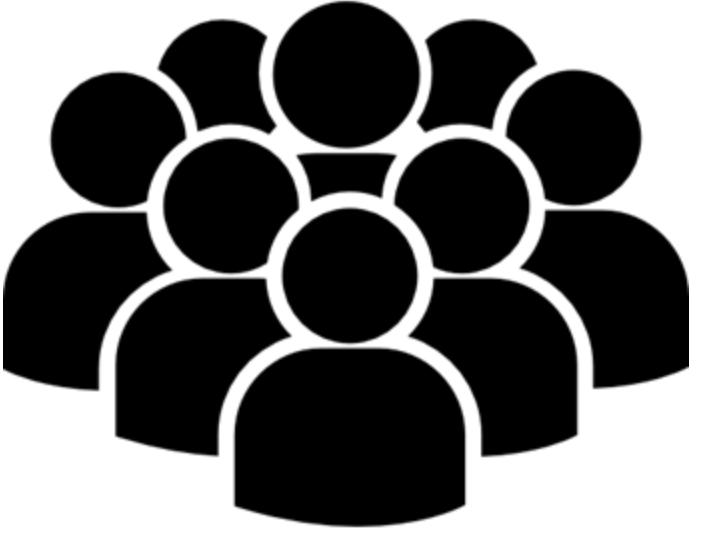


- Compute:
 - Prefill: largely same with training
 - Decode: $s = 1$
- Memory
 - New: KV cache
- Communication
 - mostly same with training

Q? how about batch size b?

Serving vs. Inference

large b



Serving: many requests, online traffic, emphasize cost-per-query.

s.t. some mild latency constraints

emphasize **throughput**

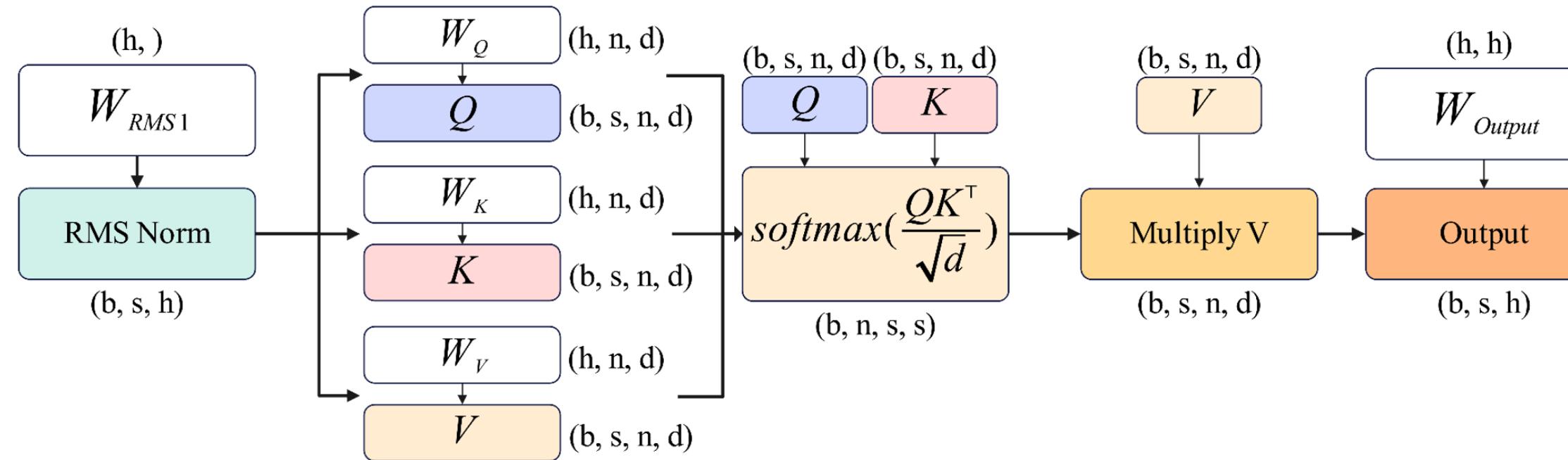
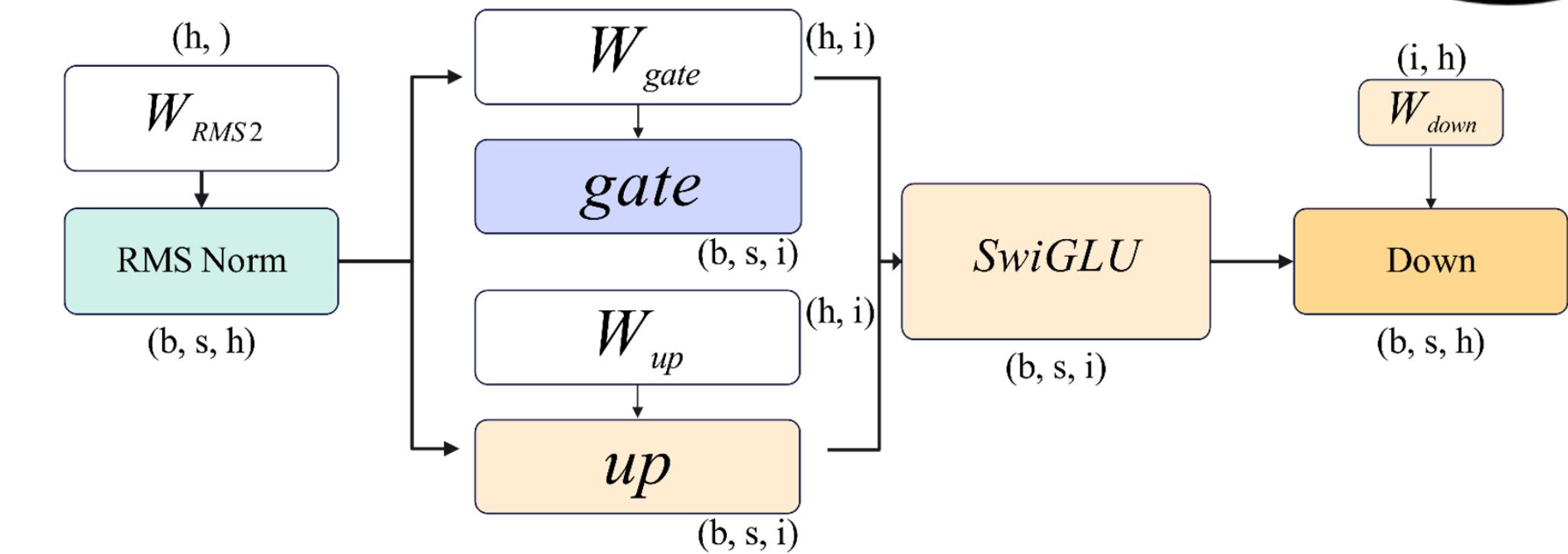
$b=1$

Inference: fewer request, low or offline traffic,

emphasize **latency**

large b

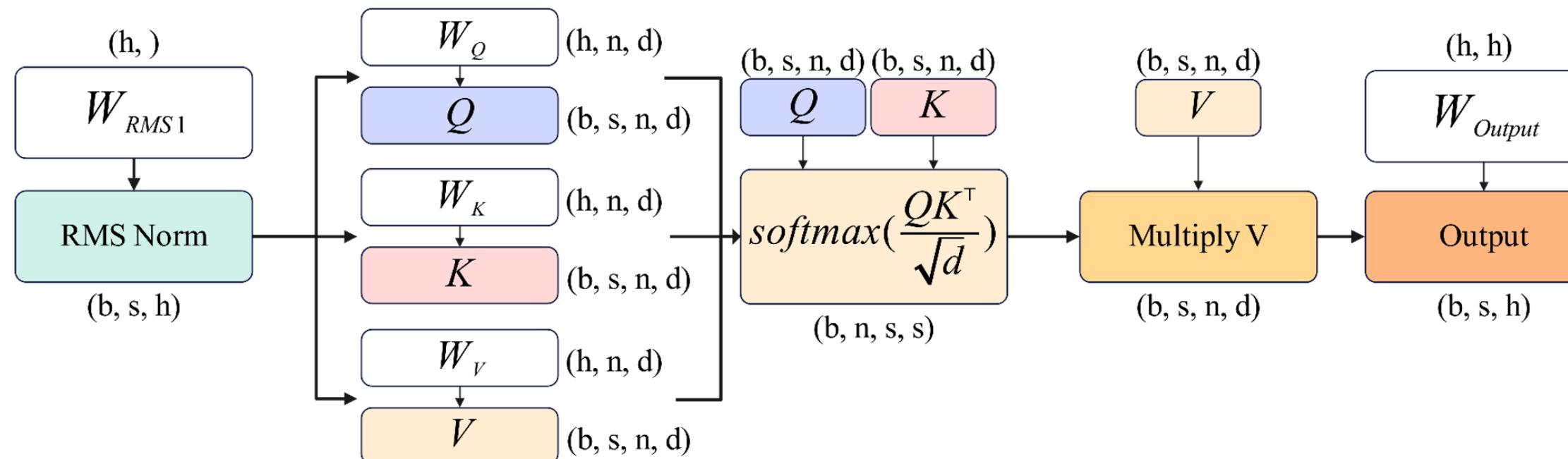
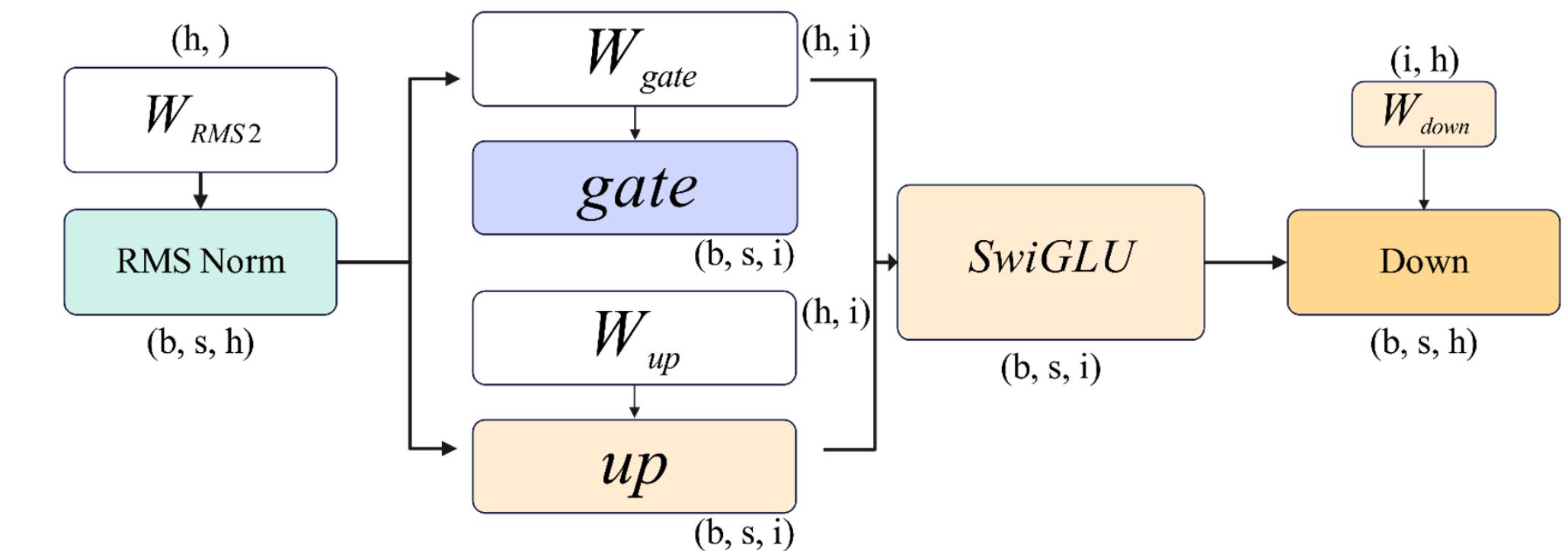
Potential Bottleneck of LLM Inference in Serving



- Compute:
 - Prefill:
 - Different prompts have **different length**: how to batch?
 - Decode
 - Different prompts have **different, unknown #generated tokens**
 - $s = 1$, b is large
- Memory
 - New: KV cache
 - **b is large -> KV is linear with b -> will KV be large?**
- Communication
 - mostly same with training

b=1

Potential Bottleneck of LLM Inference in Serving

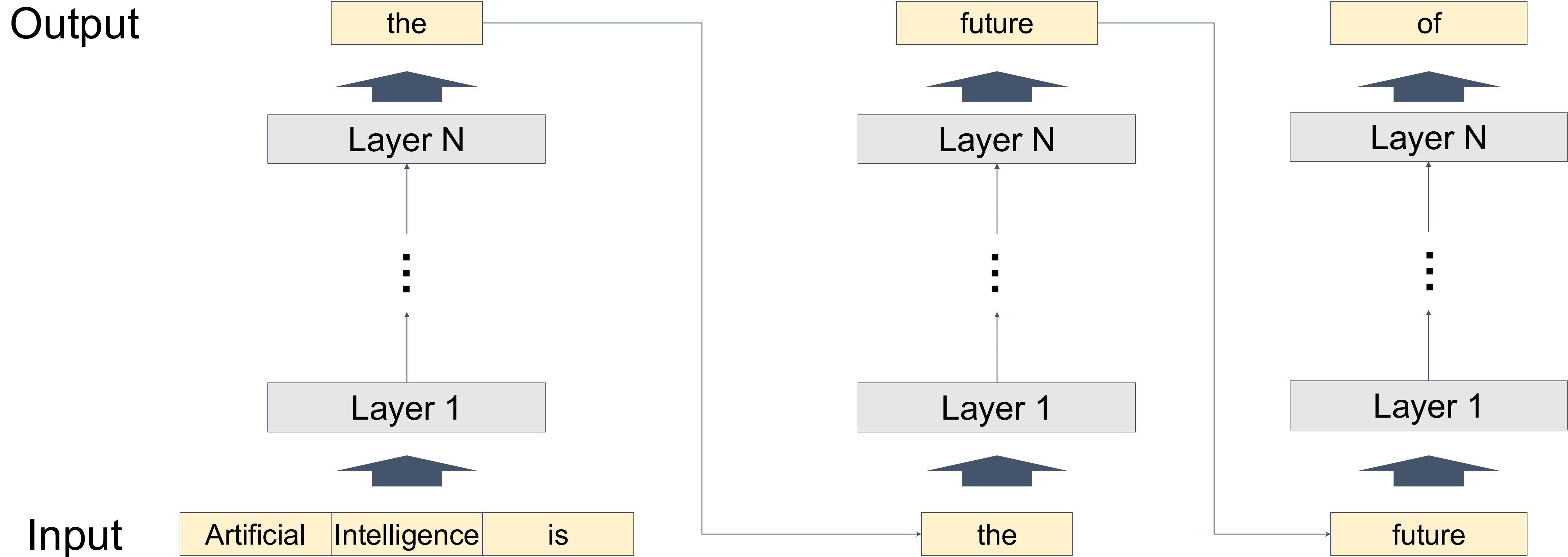


- Compute:
 - Prefill:
 - Different prompts have ~~different length~~: how to batch?
 - Decode
 - Different prompts have ~~different, unknown #generated tokens~~
 - $s = 1, b=1$
- Memory
 - New: KV cache
 - ~~b = 1 → KV is linear with b → will KVs be large?~~
- Communication
 - mostly same with training

Problems of $bs = 1$

$$\max AI = \#ops / \#bytes$$

Recap: Inference process of LLMs

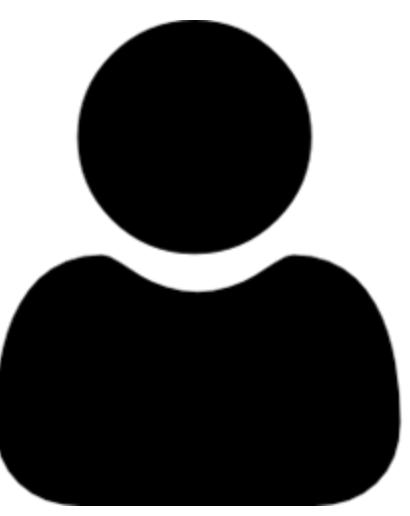


Repeat until the sequence

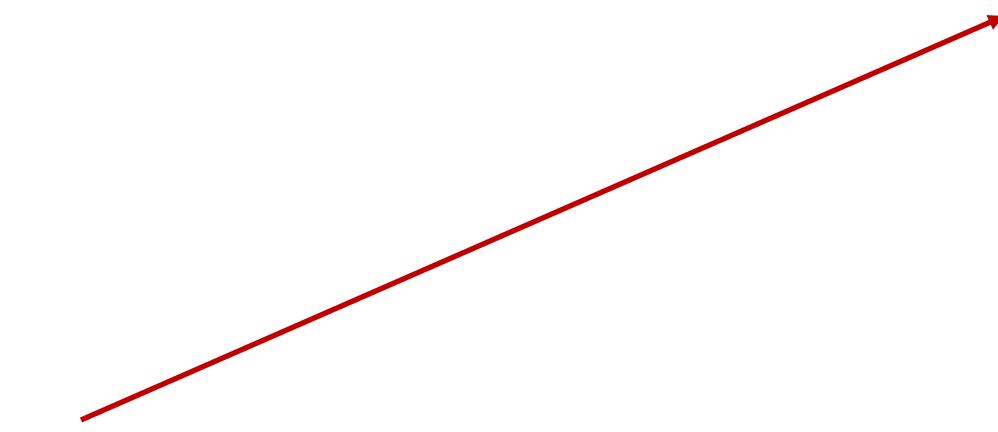
- Reaches its pre-defined maximum length (e.g., 2048 tokens)
- Generates certain tokens (e.g., "<|end of sequence|>")

Problem of $bs = 1$

$b=1$



Latency = step latency * # steps



Speculative decoding reduces this, hence amortize the memory moving cost (but it may increase compute cost)

large b

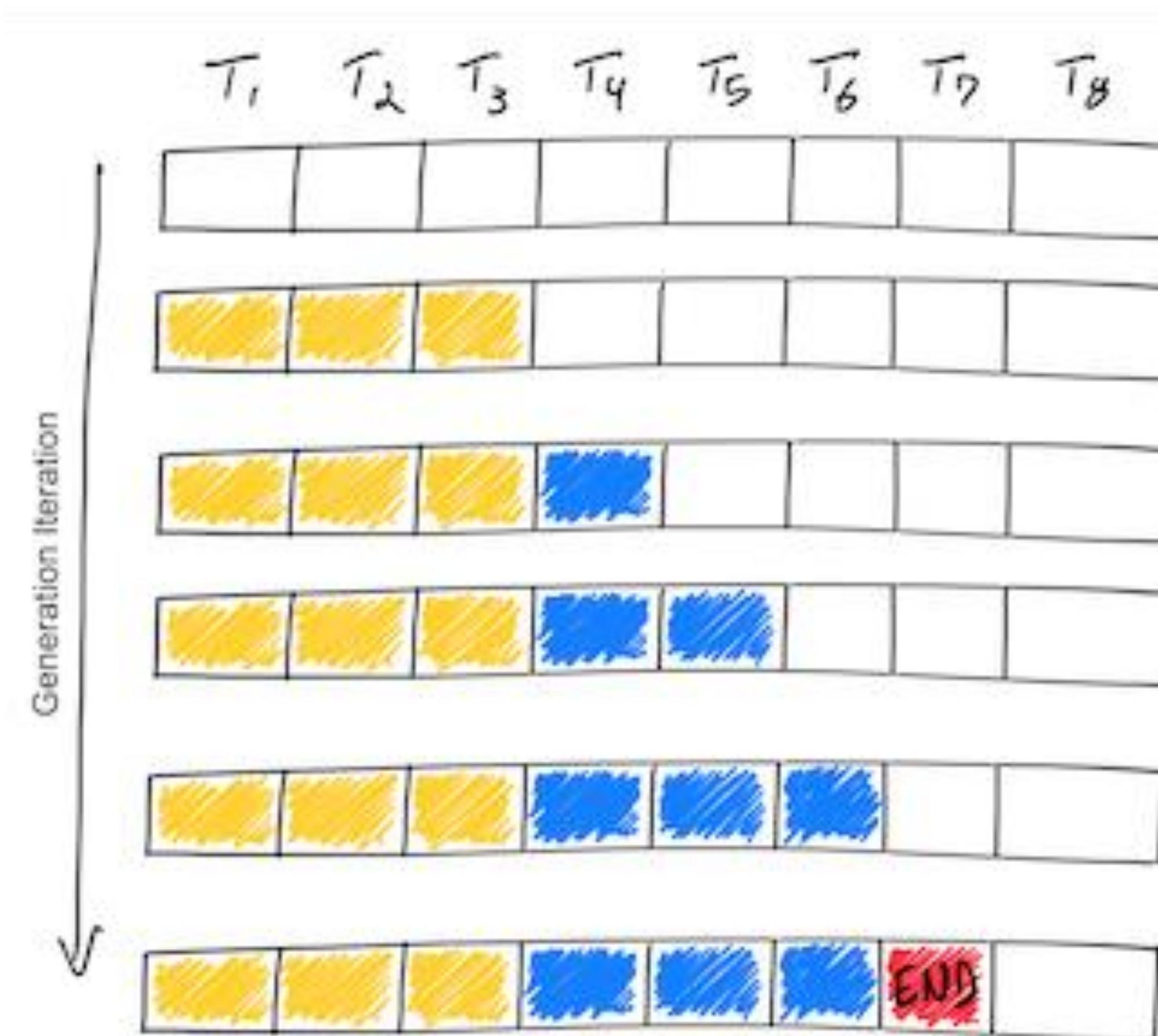


Large Language Models

Serving and inference optimization

- **Continuous batching**
- **Paged attention**
- Speculative decoding (in reading)

LLM Decoding Timeline



Batching Requests to Improve GPU Performance

T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8
S_1	S_1	S_1	S_1				
S_2	S_2	S_2					
S_3	S_3	S_3	S_3				
S_4	S_4	S_4	S_4	S_4			

T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8
S_1	S_1	S_1	S_1	S_1	END		
S_2	END						
S_3	S_3	S_3	S_3	END			
S_4	END						

Issues with static batching:

- Requests may complete at different iterations
- Idle GPU cycles
- New requests cannot start immediately

Continuous Batching

T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8
S_1	S_1	S_1	S_1				
S_2	S_2	S_2					
S_3	S_3	S_3	S_3				
S_4	S_4	S_4	S_4	S_4			

T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8
S_1	S_1	S_1	S_1	S_1	END	S_6	S_6
S_2	END						
S_3	S_3	S_3	S_3	END	S_5	S_5	S_5
S_4	END						

Benefits:

- Higher GPU utilization
- New requests can start immediately

Continuous Batching Step-by-Step

- Receives two new requests R1 and R2

R1: optimizing ML
systems

R2: LLM serving is

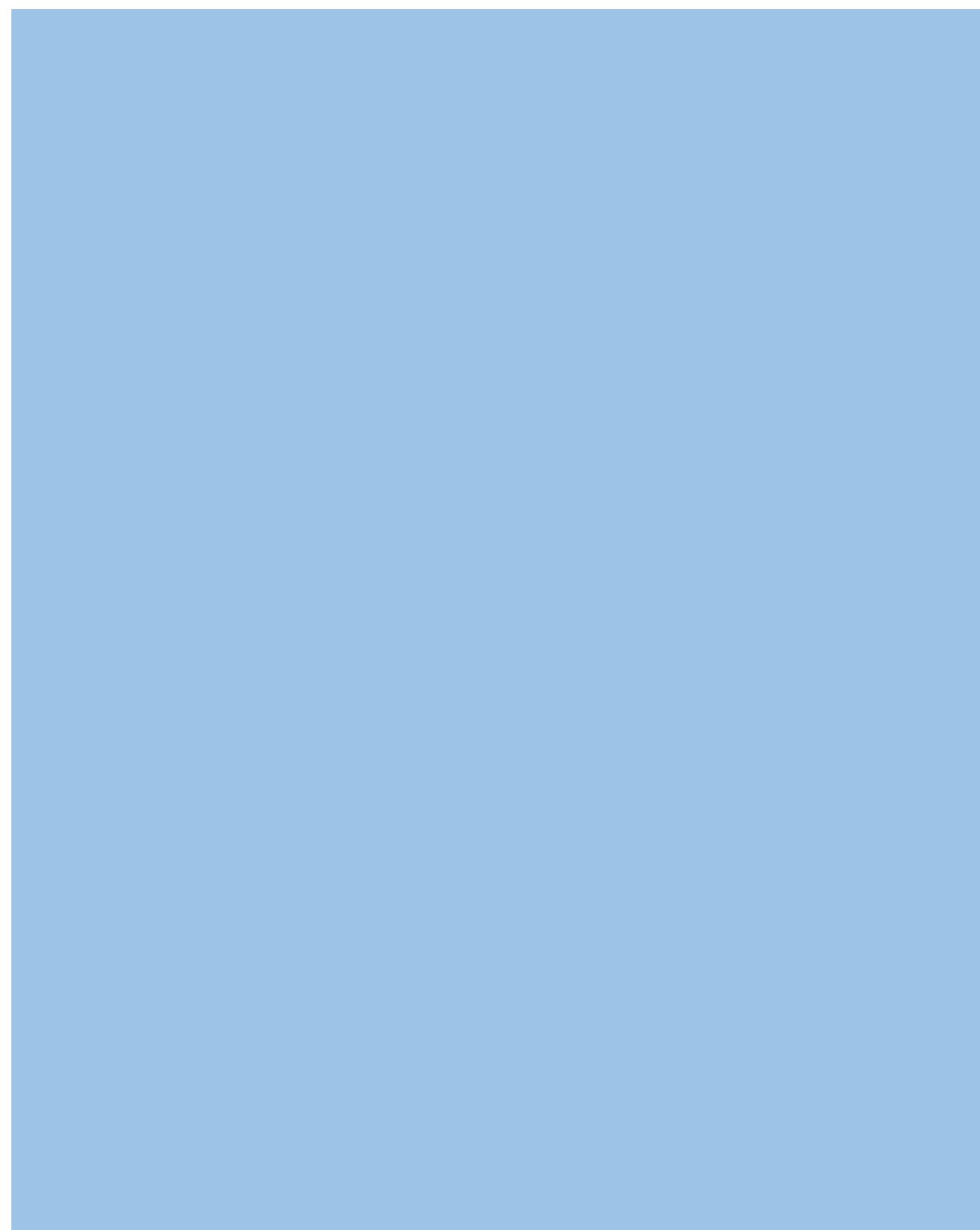
**Request Pool
(CPU)**

Maximum serving batch
size = 3

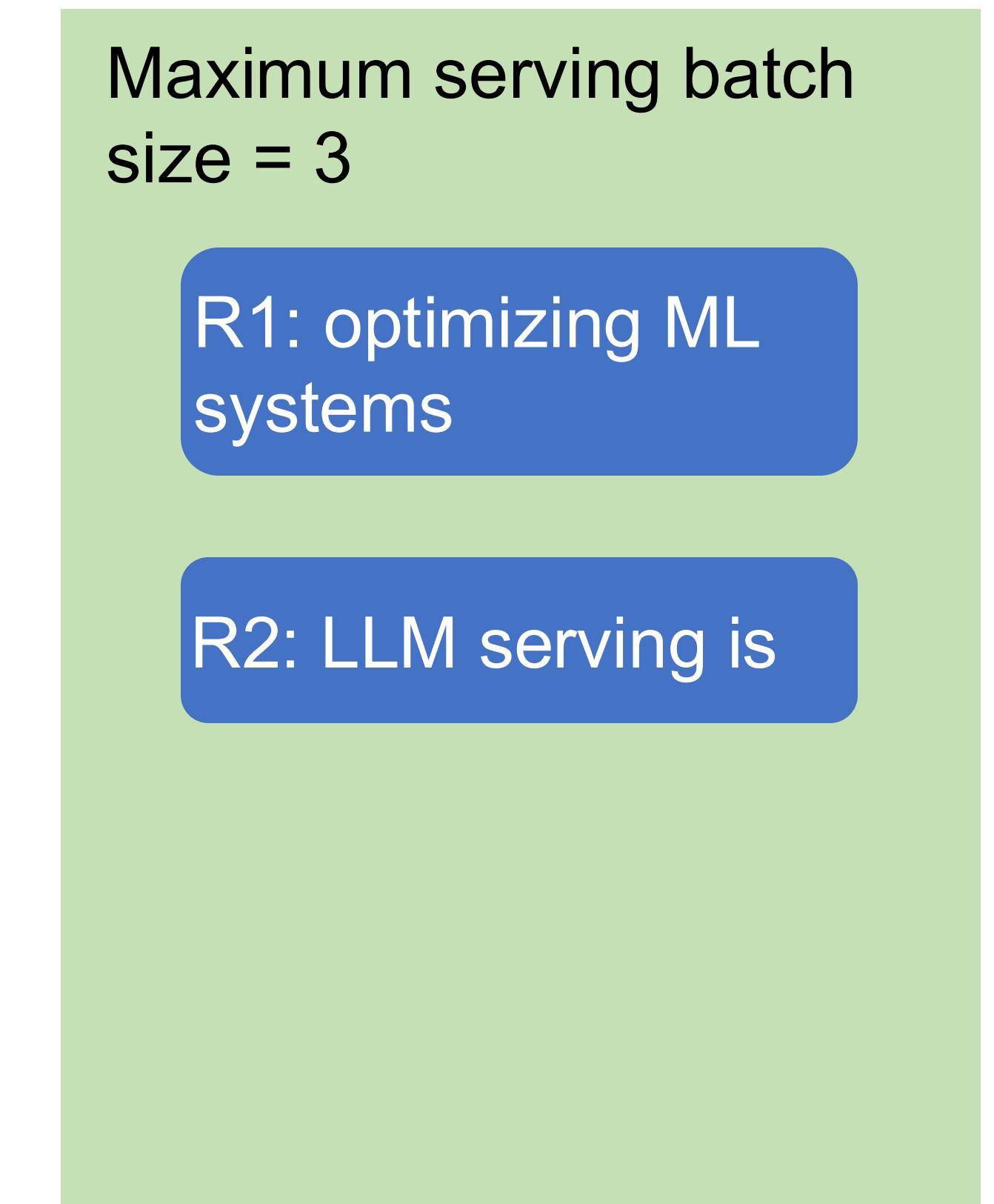
**Execution Engine
(GPU)**

Continuous Batching Step-by-Step

- Iteration 1: decode R1 and R2



**Request Pool
(CPU)**

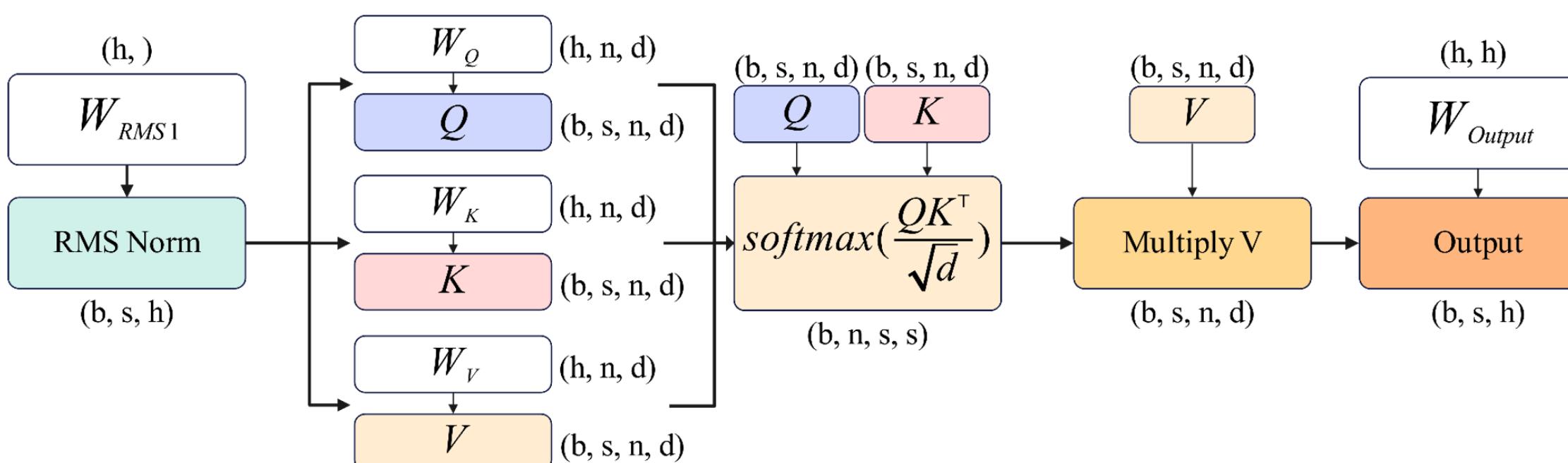
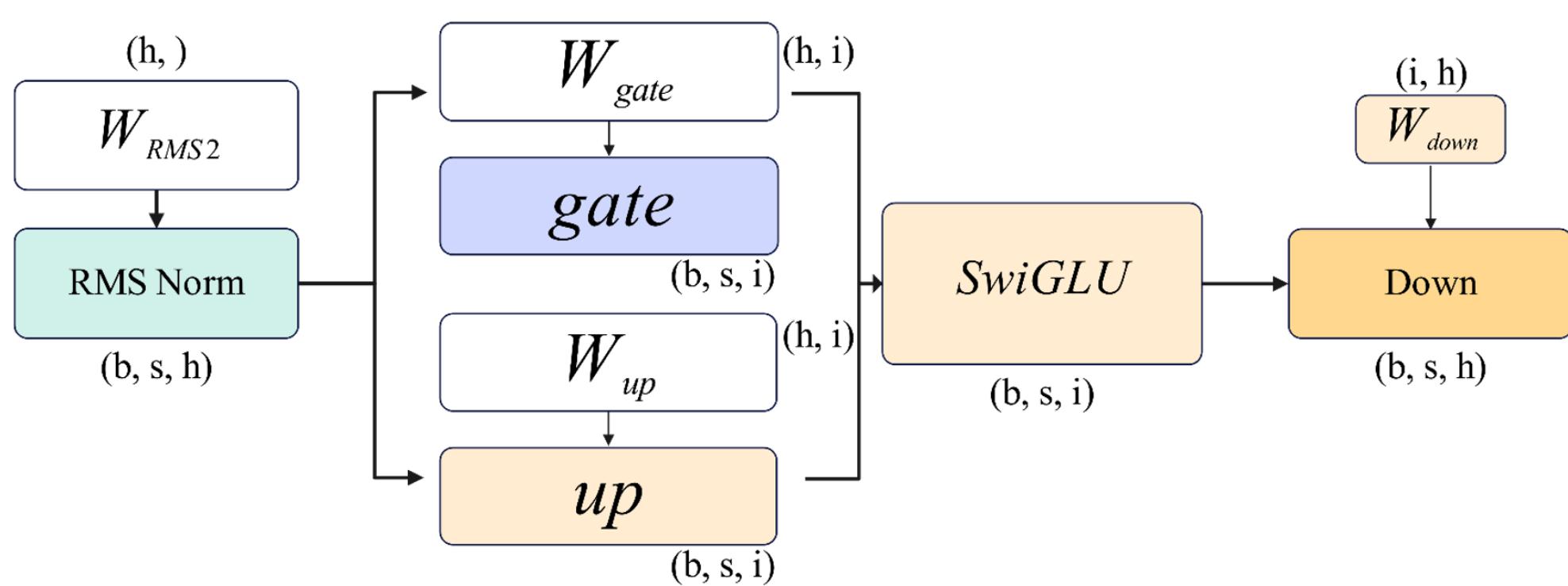


**Execution Engine
(GPU)**

Iteration 1

Continuous Batching Step-by-Step

- Iteration 1: decode R1 and R2



Q: How to batch these?

Maximum serving batch size = 3

R1: optimizing ML systems

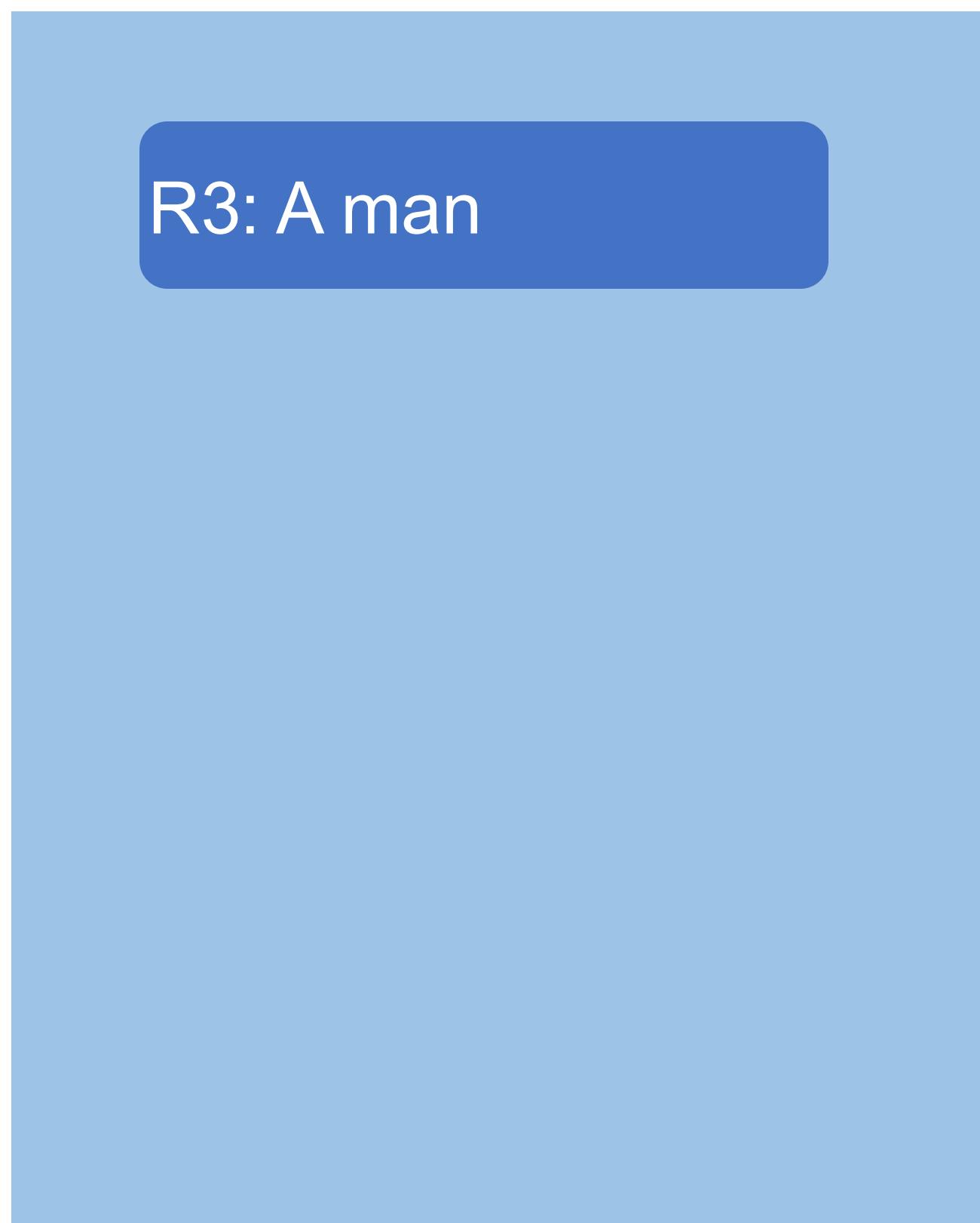
R2: LLM serving is

Iteration 1

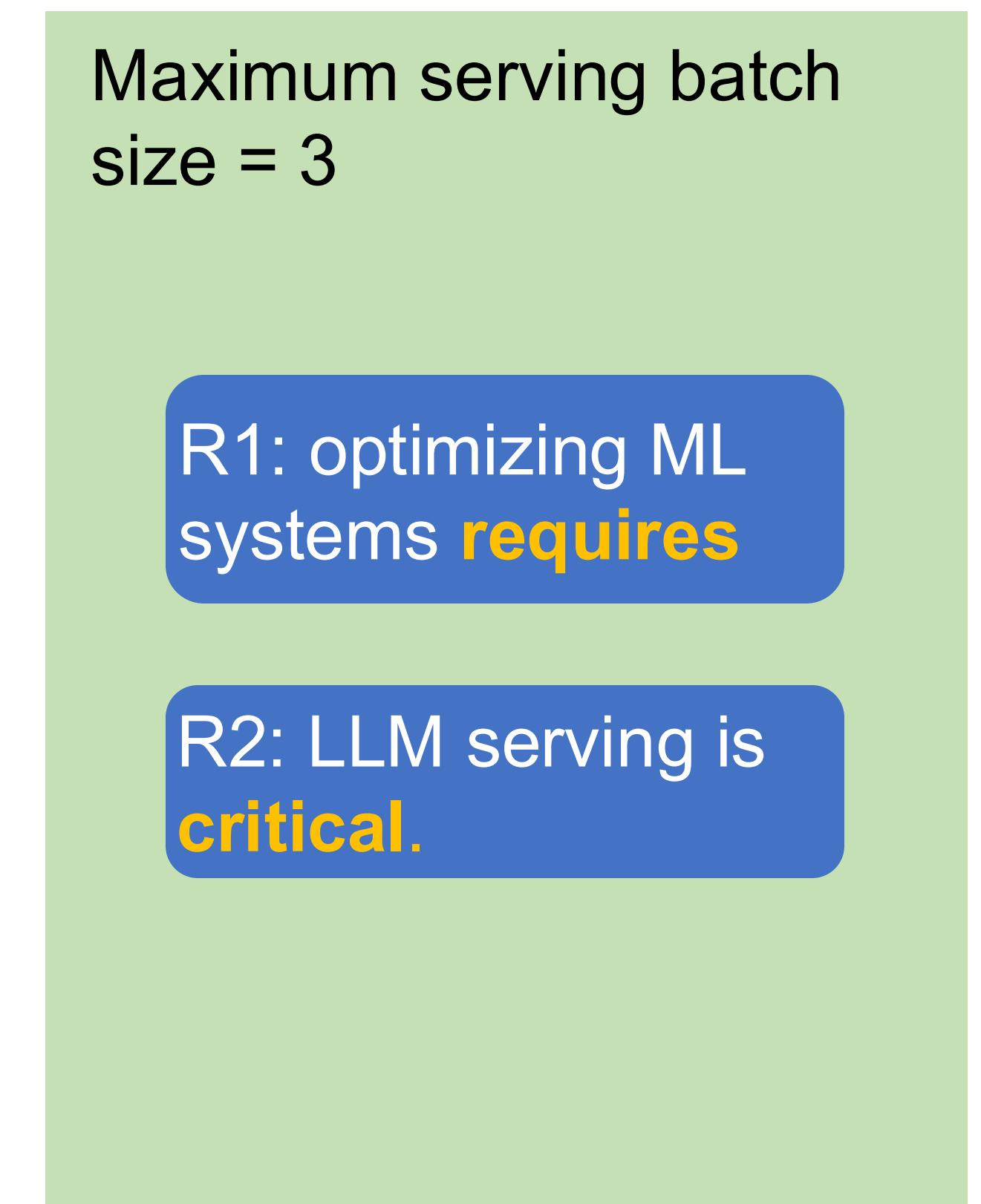
Execution Engine
(GPU)

Continuous Batching Step-by-Step

- Receive a new request R3; finish decoding R1 and R2



**Request Pool
(CPU)**



**Execution Engine
(GPU)**

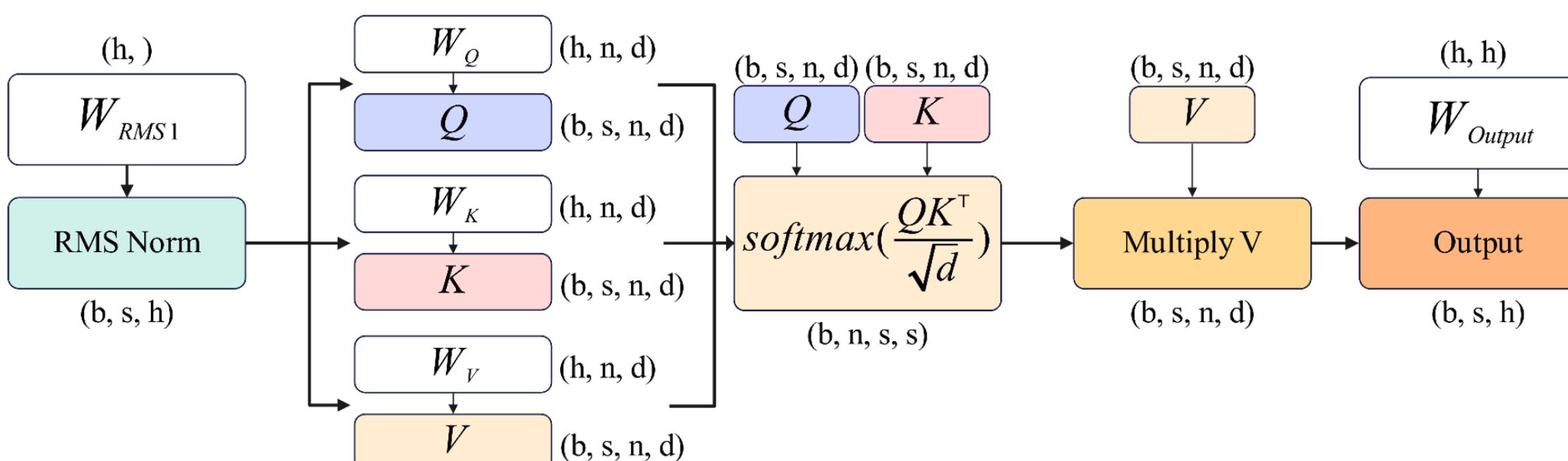
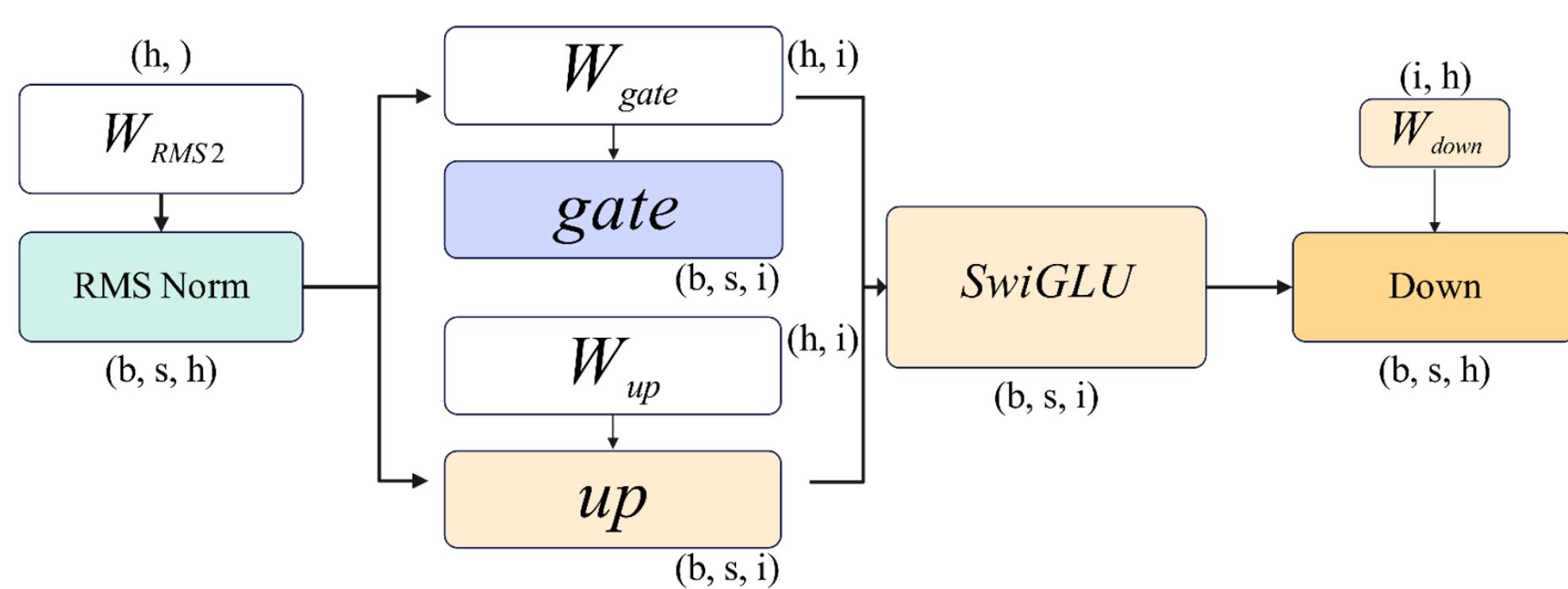
C

Iteration 1

Continuous Batching Step-by-Step

Q: How to batch these?

- Receive a new request R3; finish decoding R1 and R2



Maximum serving/batch
size = 3

R1: optimizing ML systems **requires**

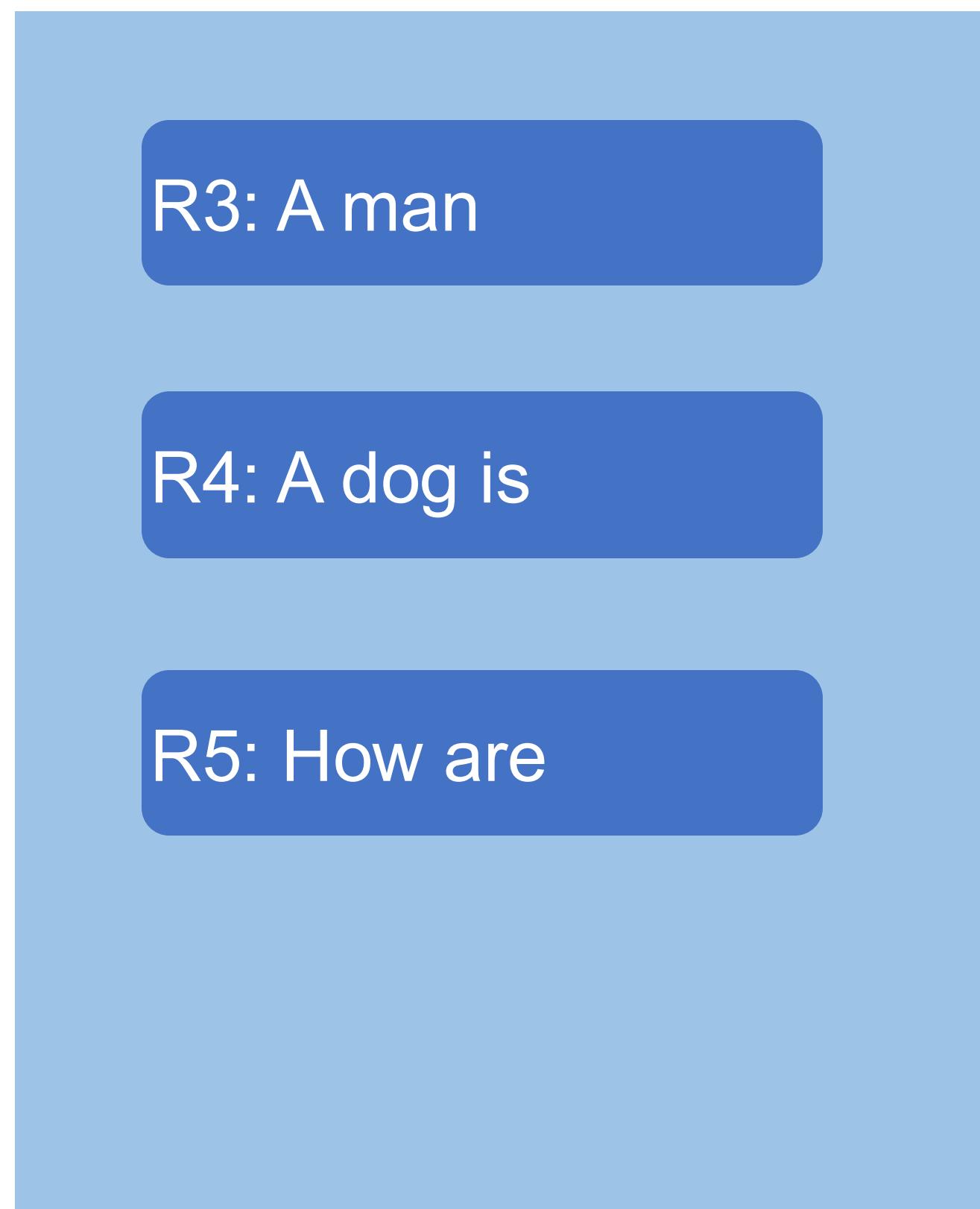
R2: LLM serving is critical.

Execution Engine (GPU)

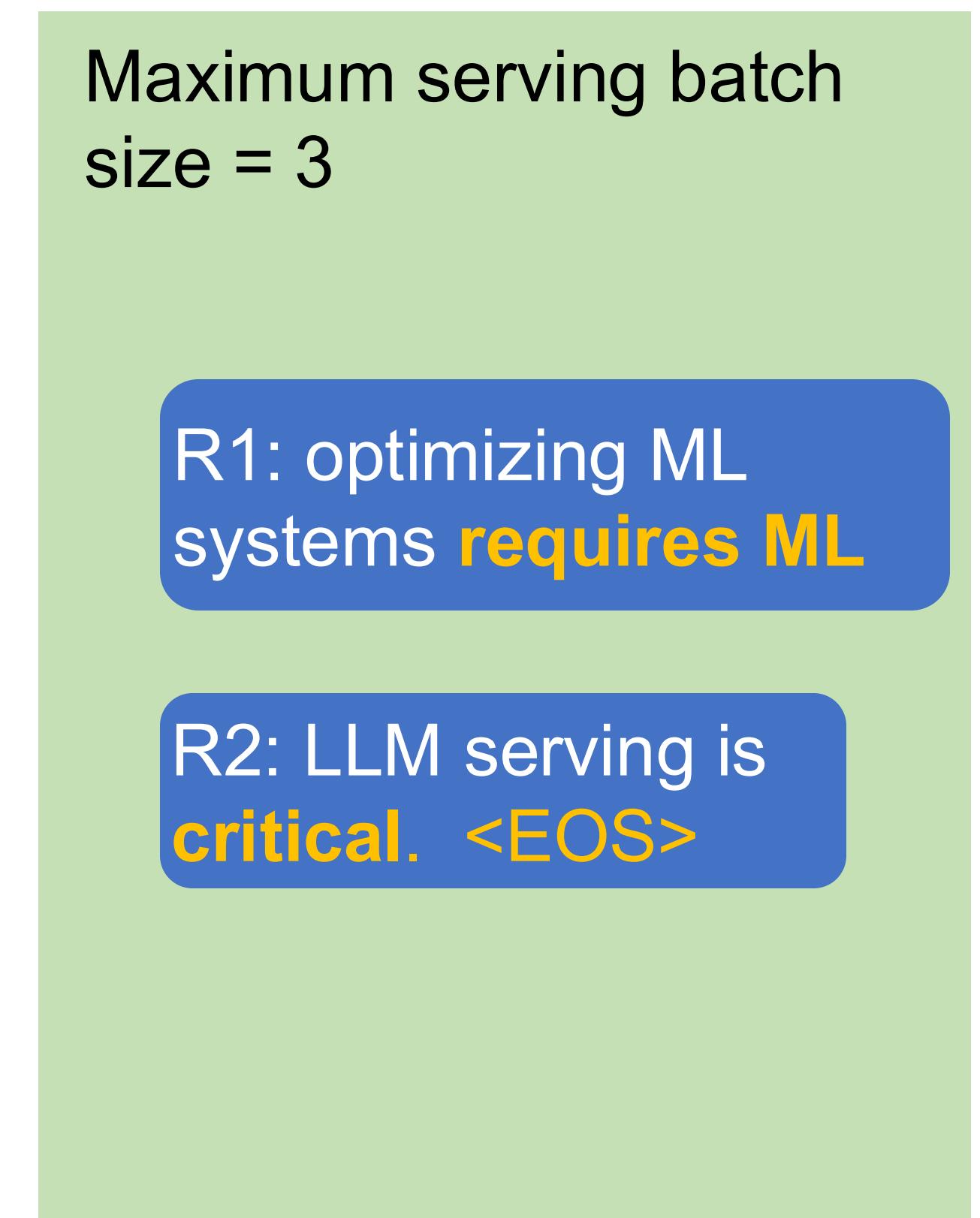
Iteration 1

Traditional Batching

- Receive a new request R3; finish decoding R1 and R2



**Request Pool
(CPU)**

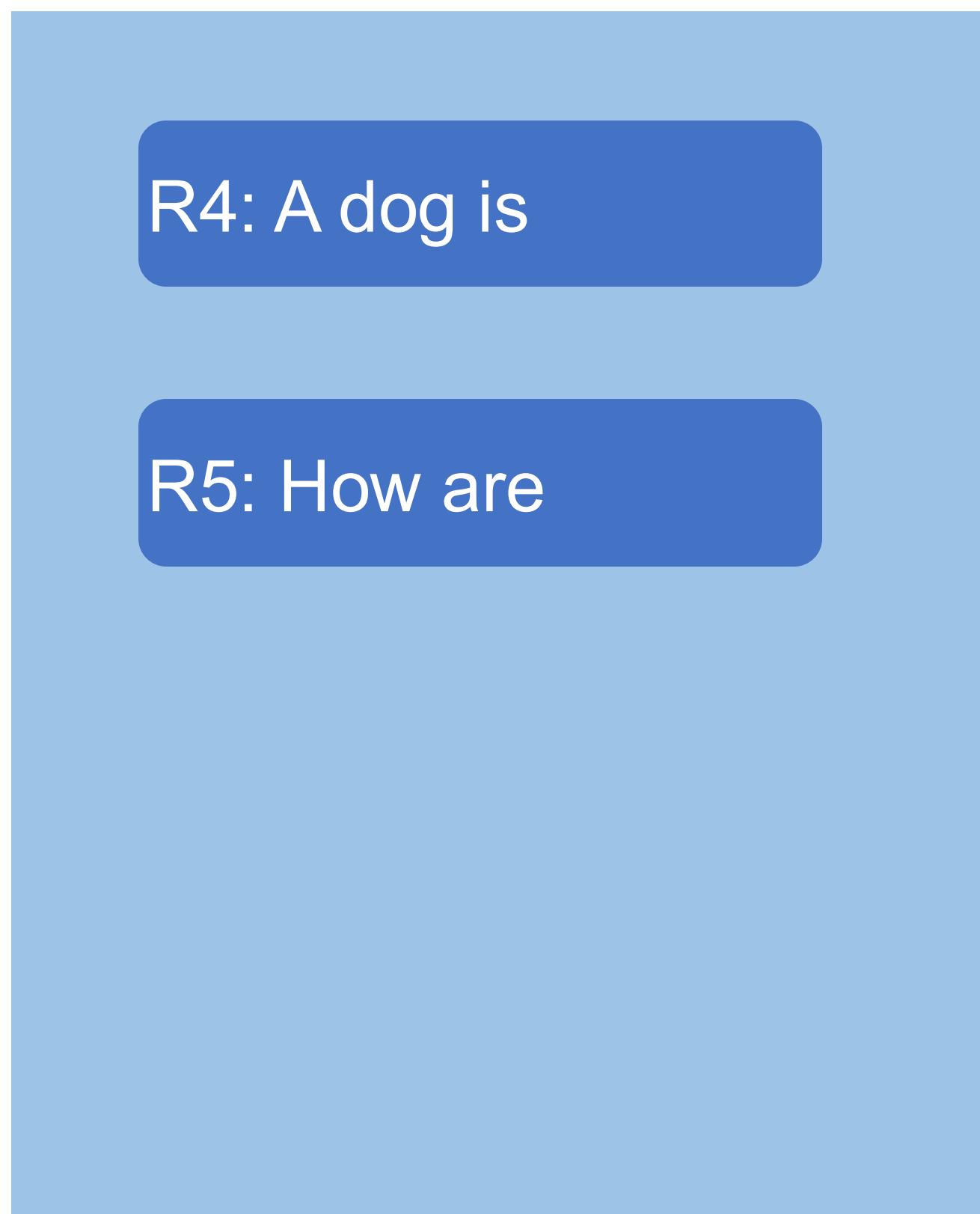


**Execution Engine
(GPU)**

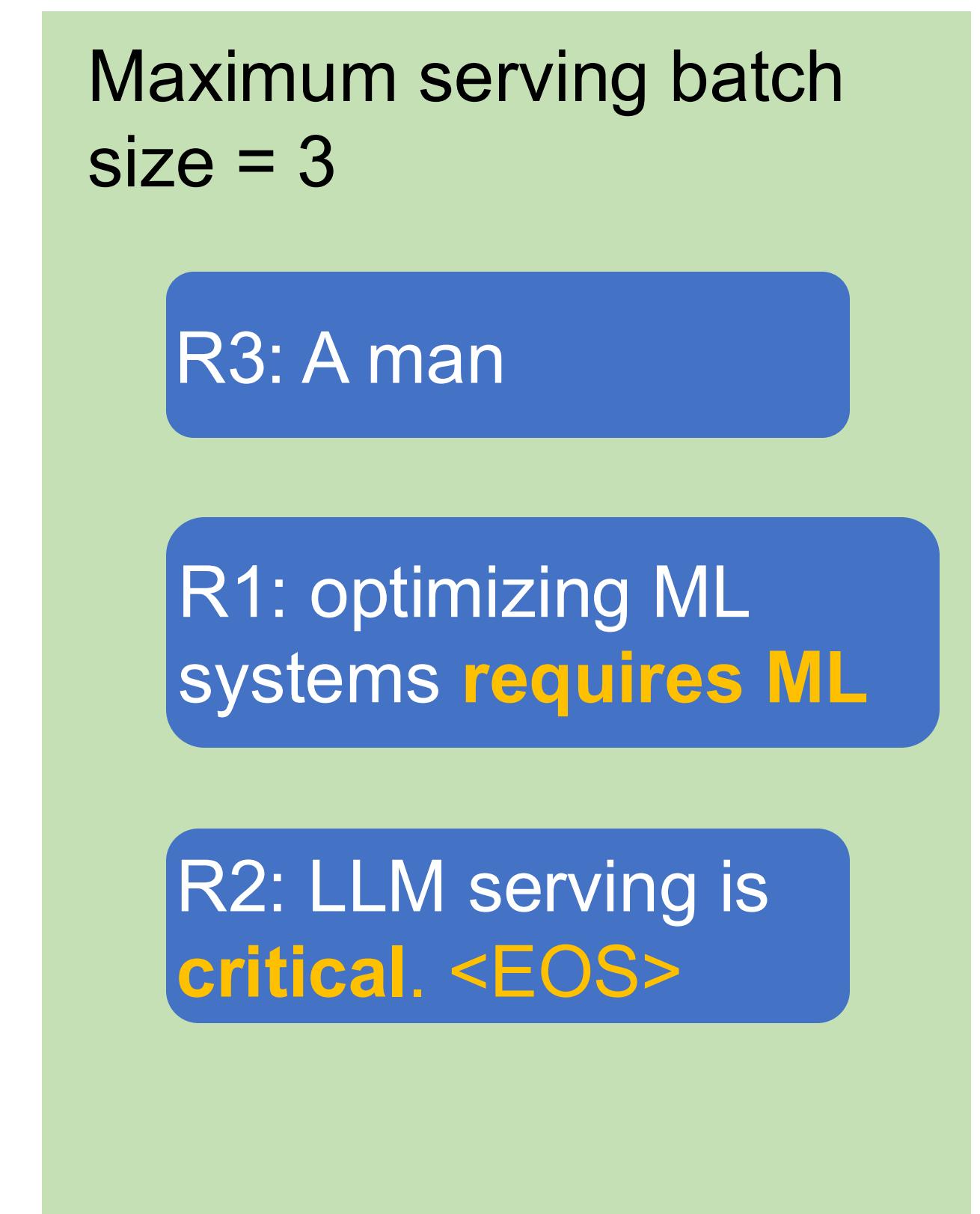
Iteration 2

Continuous Batching

- Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes



**Request Pool
(CPU)**



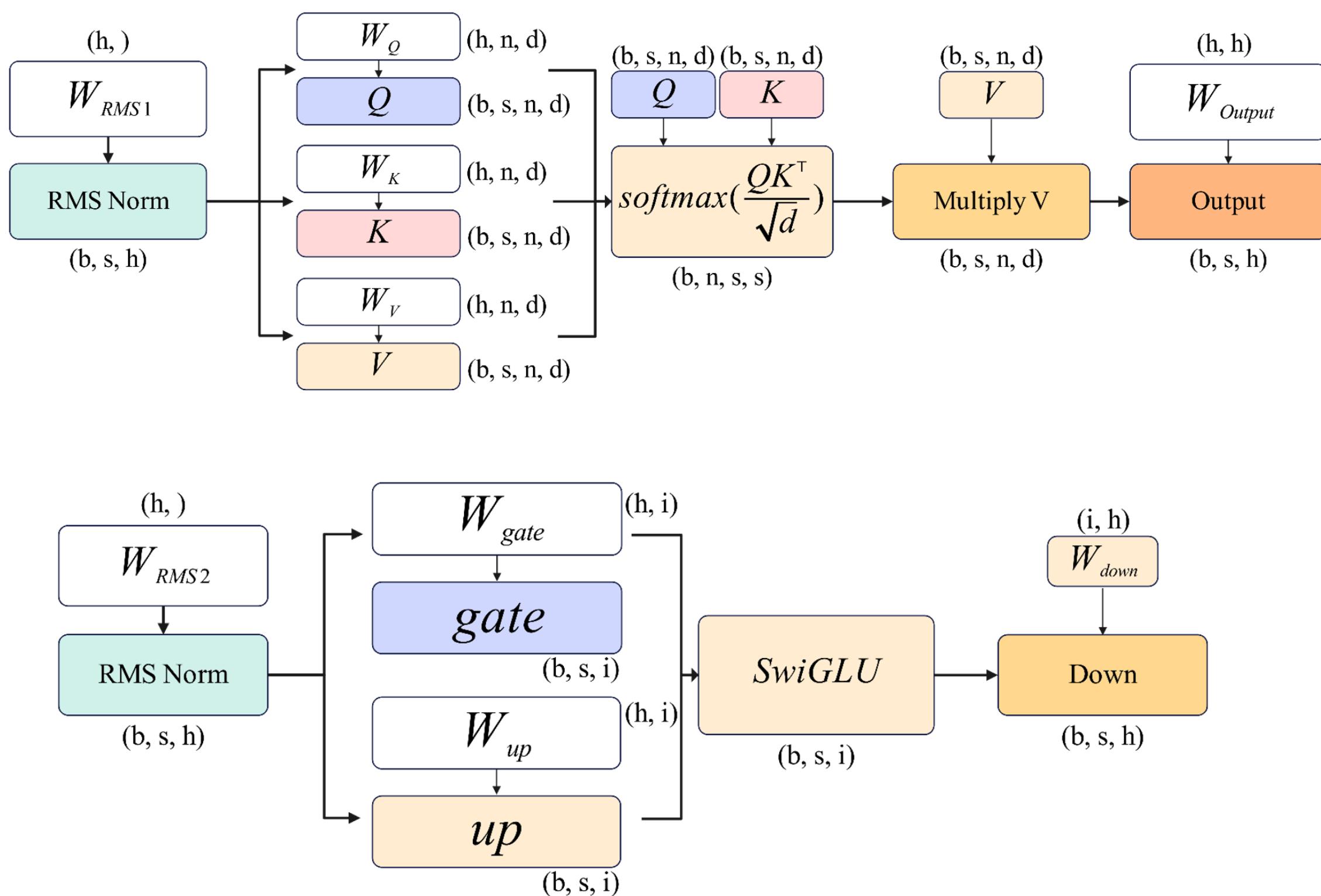
**Execution Engine
(GPU)**

Iteration 2

Continuous Batching

Q: How to batch these?

- Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes



Maximum serving batch size = 3

R3: A man

R1: optimizing ML systems **requires ML**

R2: LLM serving is **critical** <EOS>

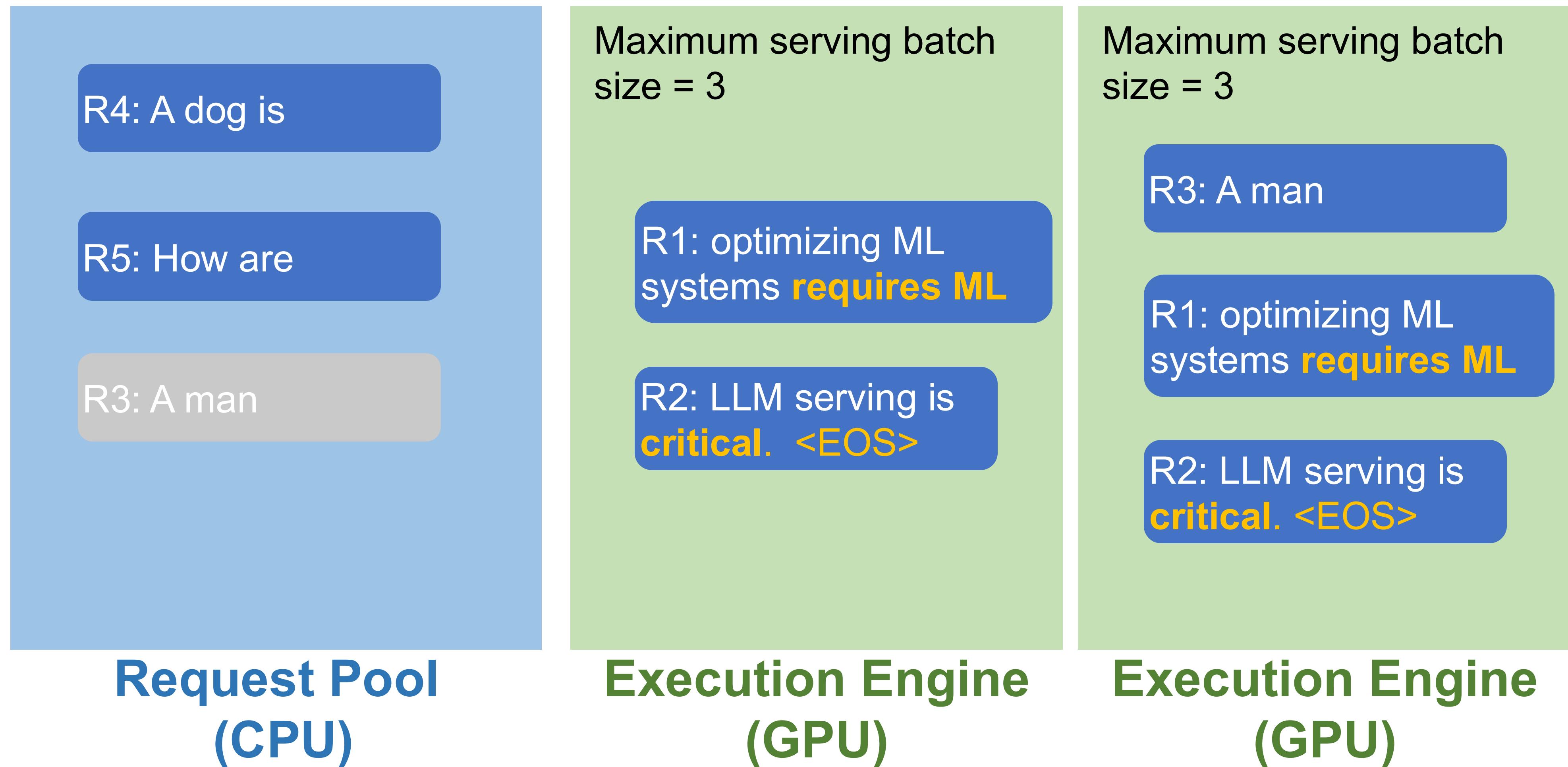
C

Iteration 2

Execution Engine
(GPU)

Traditional vs. Continuous Batching

- Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes

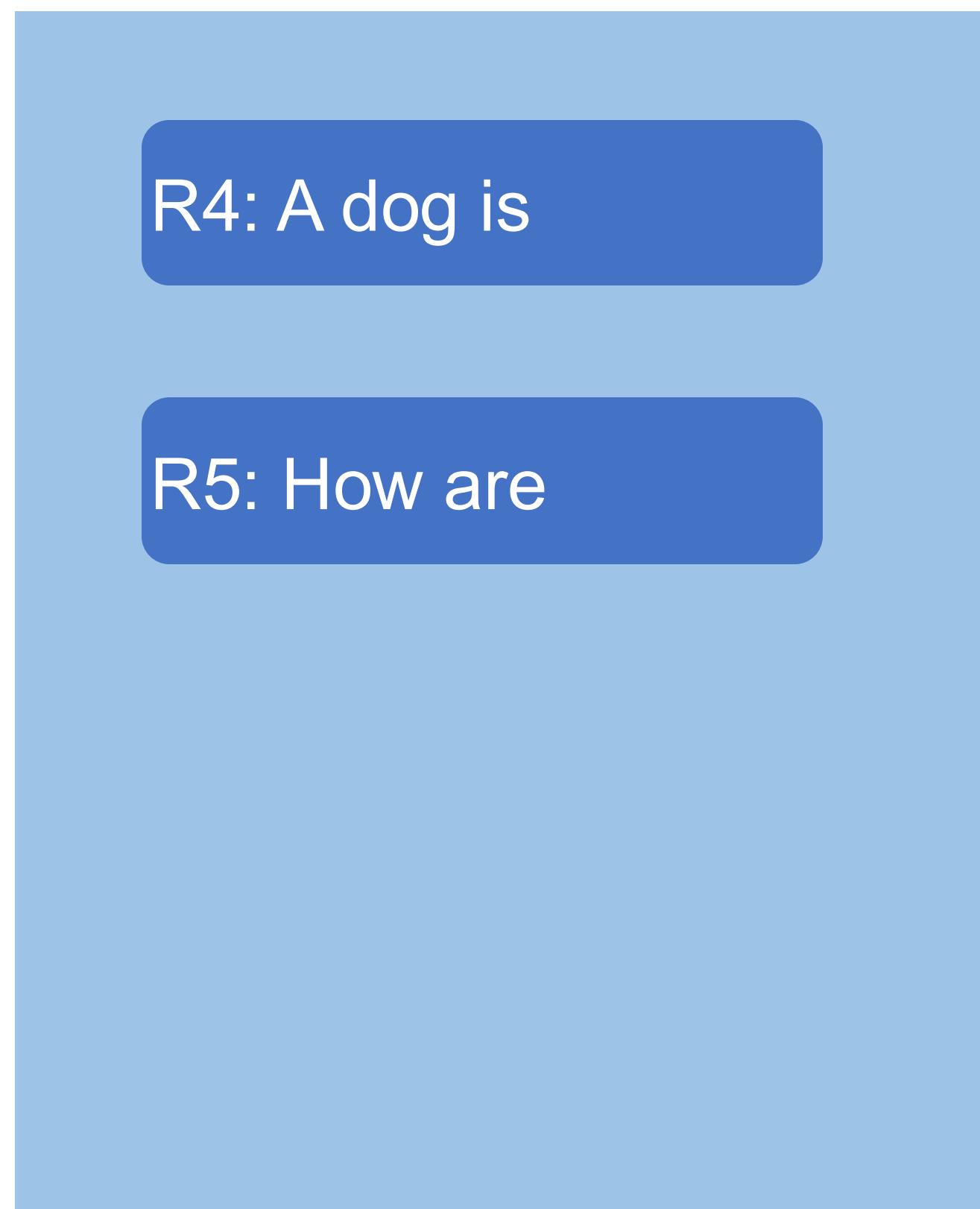


C

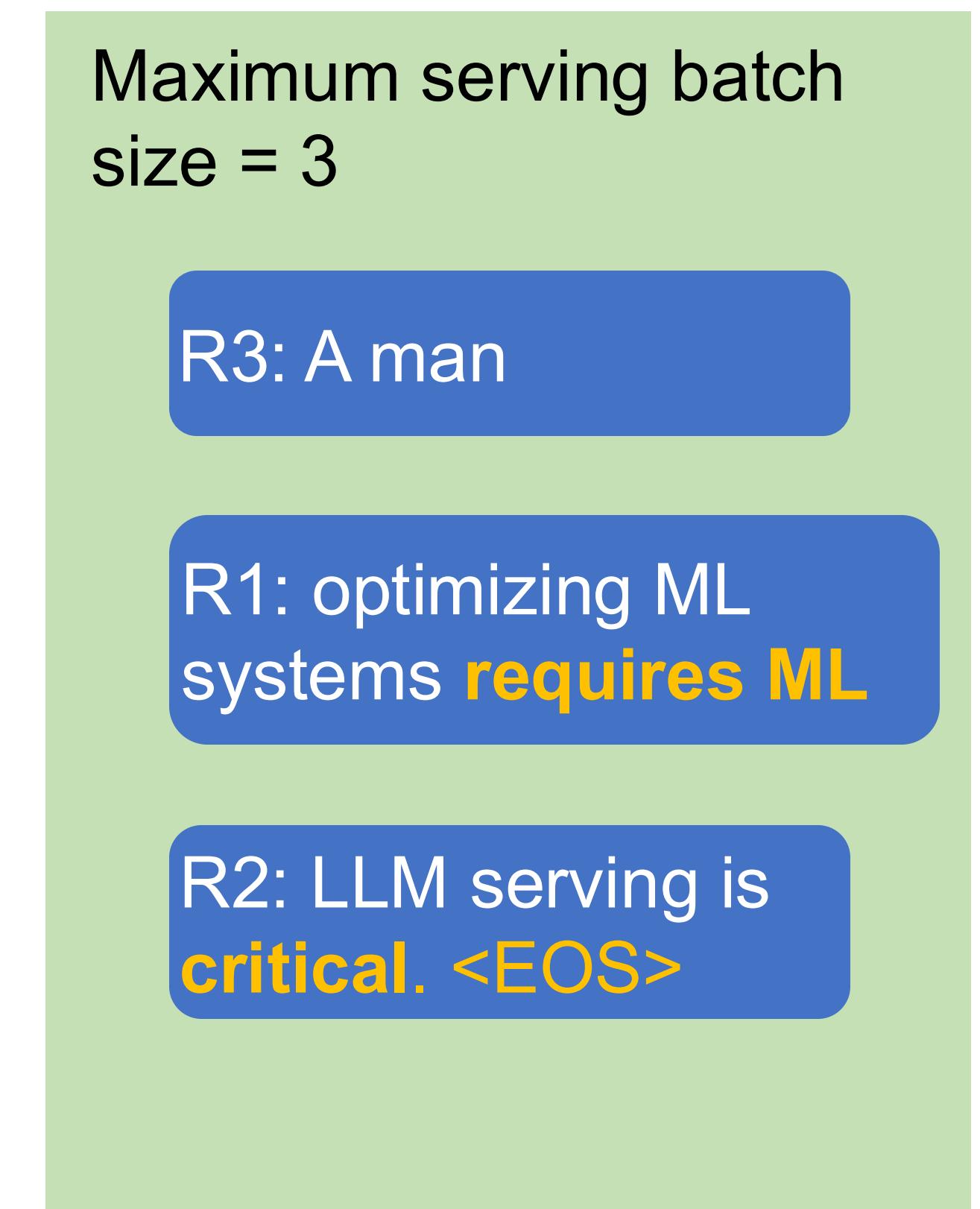
Iteration 2

Continuous Batching

- Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes



**Request Pool
(CPU)**

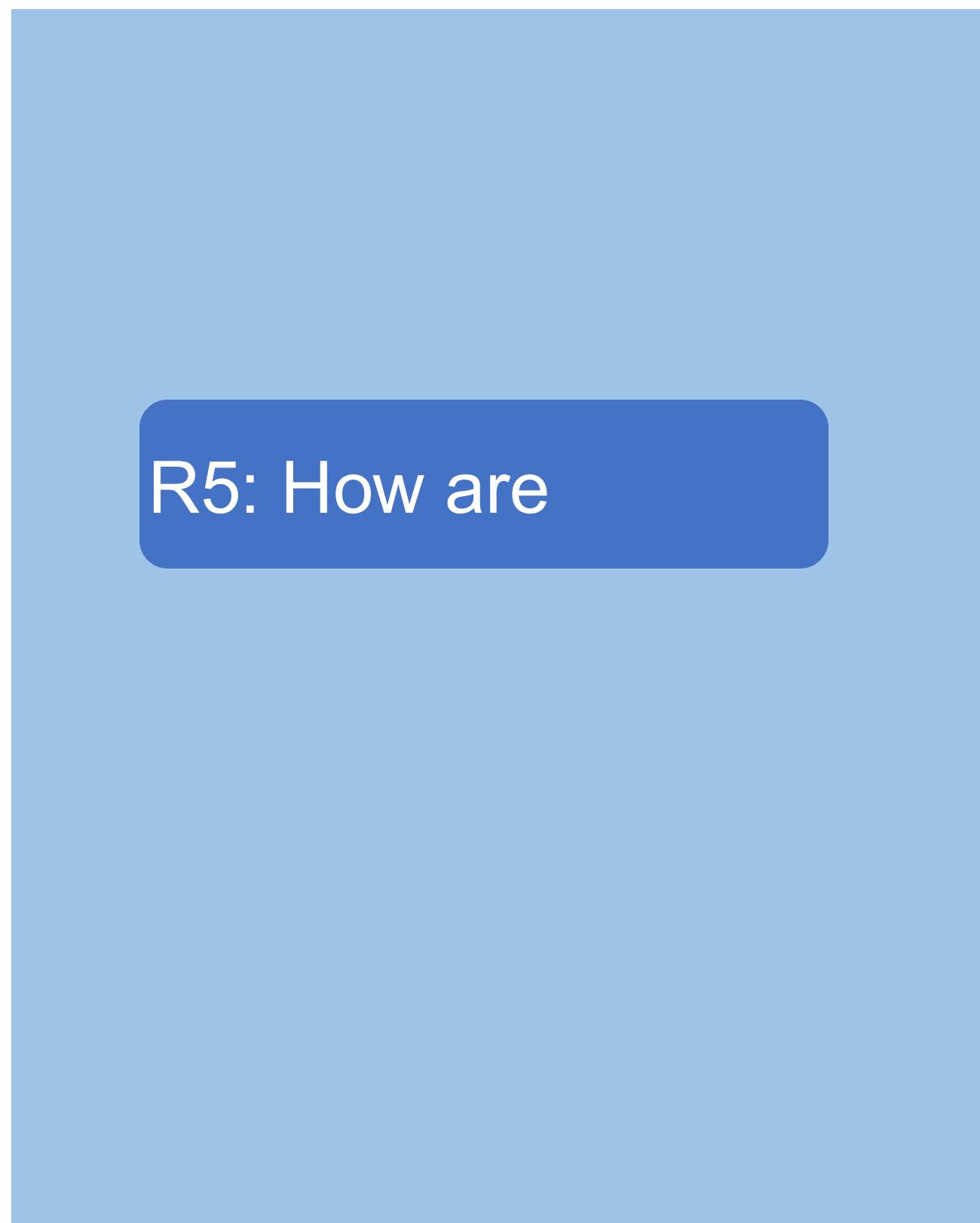


**Execution Engine
(GPU)**

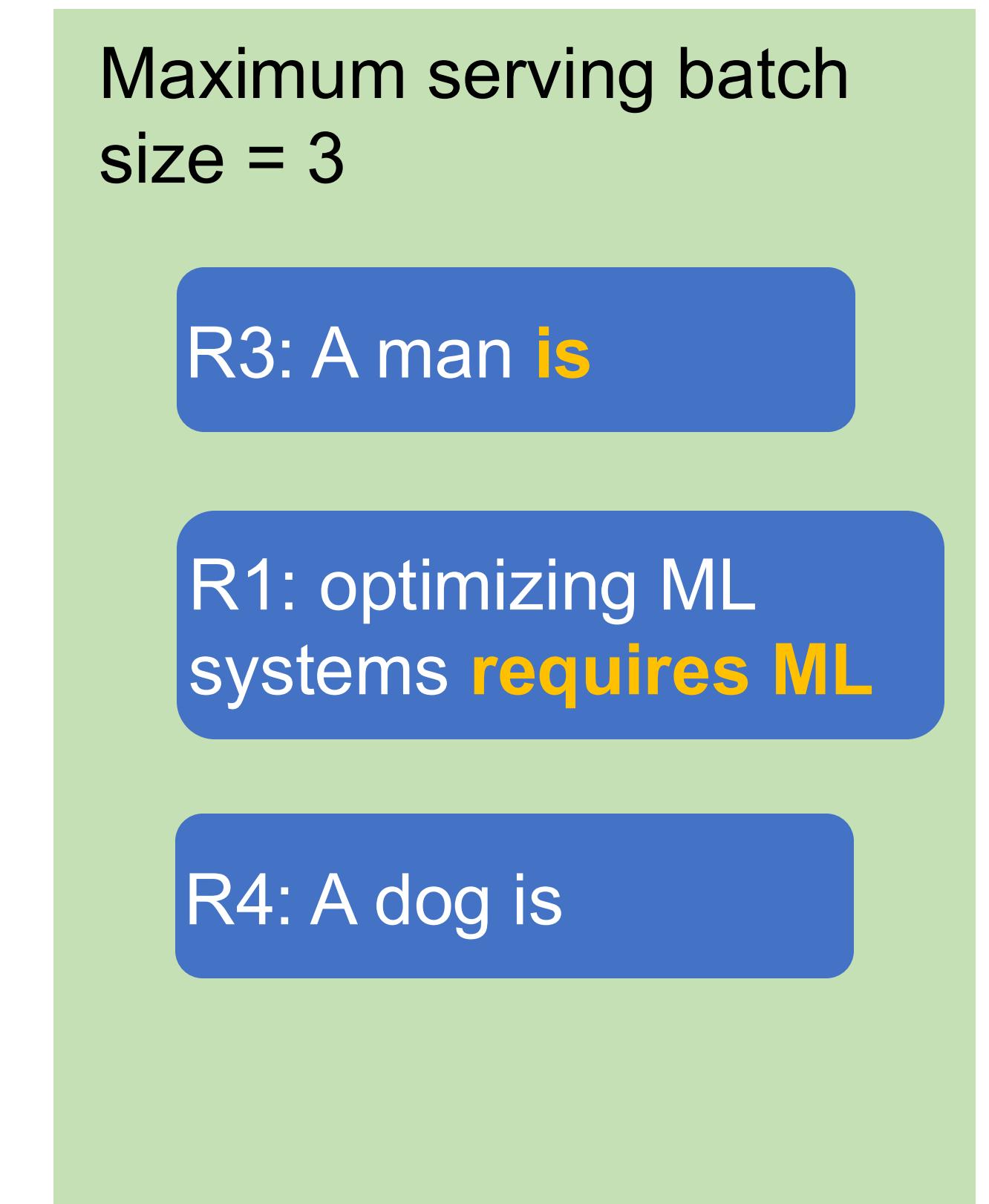
Iteration 2

Continuous Batching Step-by-Step

- Iteration 3: decode R1, R3, R4



**Request Pool
(CPU)**



**Execution Engine
(GPU)**

C
Iteration 3

Summary: Continuous Batching

- Handle early-finished and late-arrived requests more efficiently
- Improve GPU utilization
- Key observation
 - MLP kernels are agnostic to the sequence dimension

KV Cache

Output

Artificial	-0.2	0.1	-1.1
Intelligence	0.9	0.7	0.2
is	-0.1	-0.3	0.1
	⋮		
	⋮		

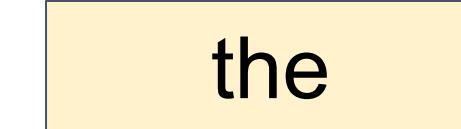
the	-1.1	0.5	0.4
	⋮		
	⋮		

KV Cache

Artificial	-0.1	0.3	1.2
Intelligence	0.7	-0.4	0.8
is	0.2	-0.1	1.1
	⋮		
	⋮		

the	-0.7	0.1	-0.2
	⋮		
	⋮		

Input

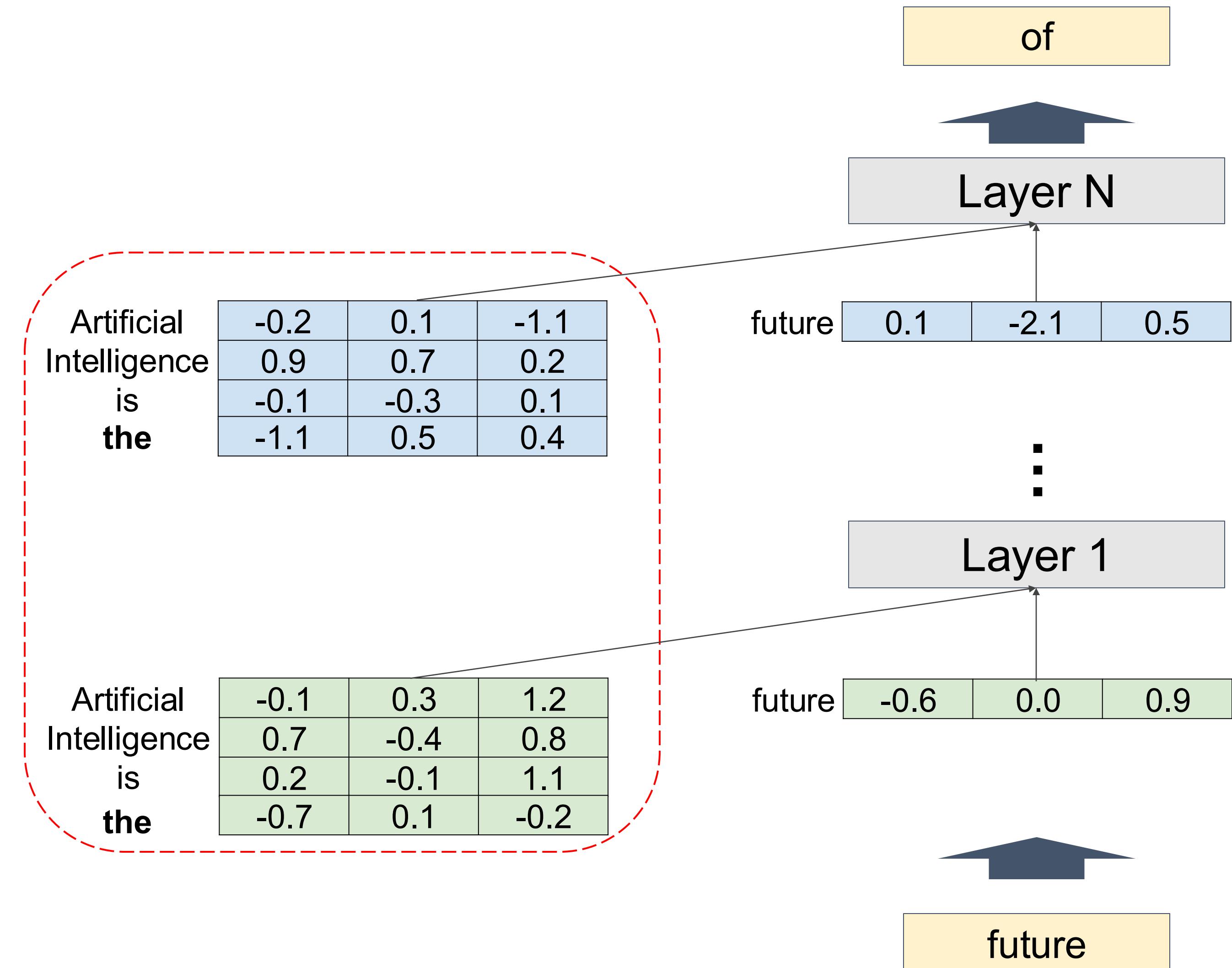


KV Cache

Output

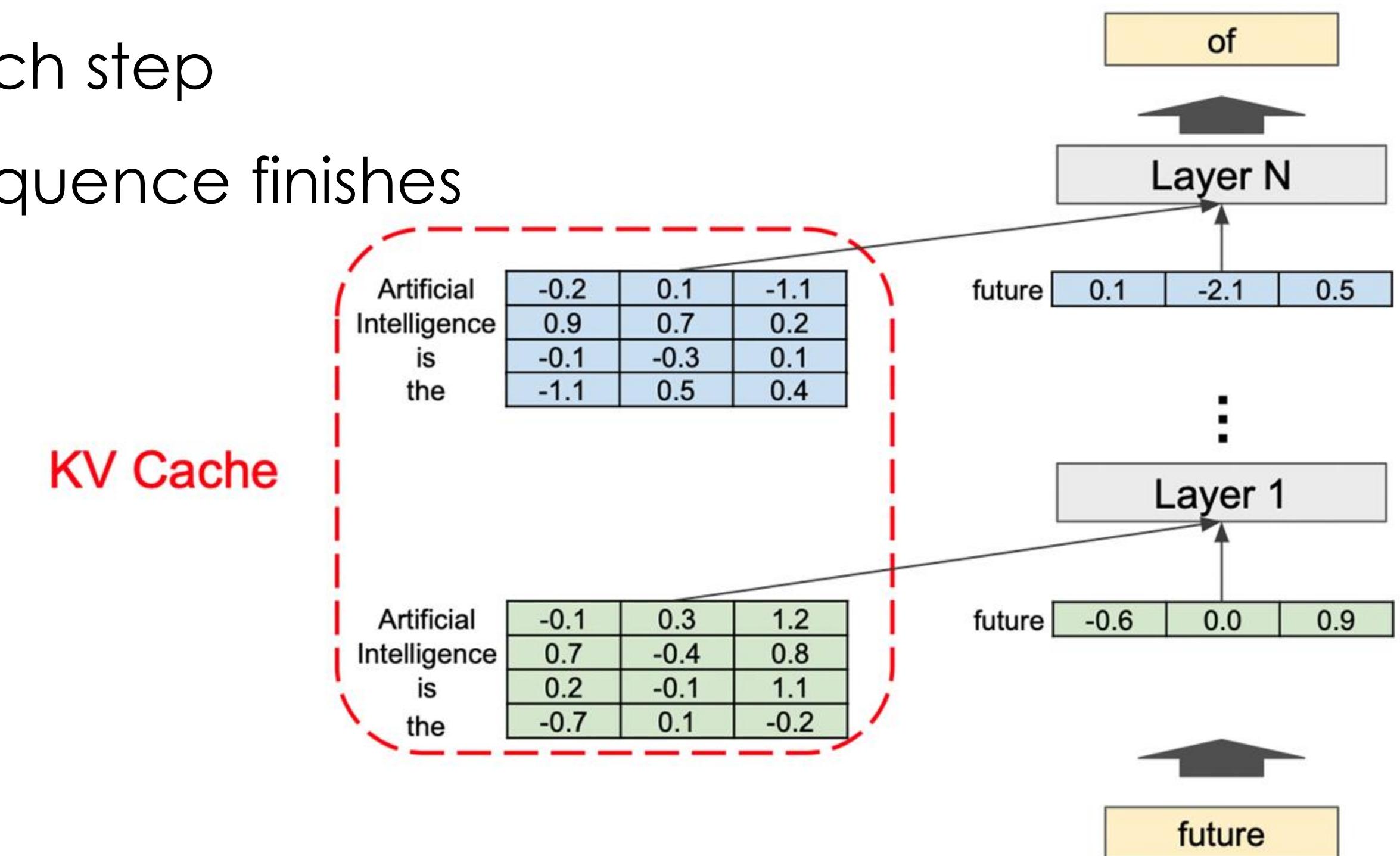
KV Cache

Input



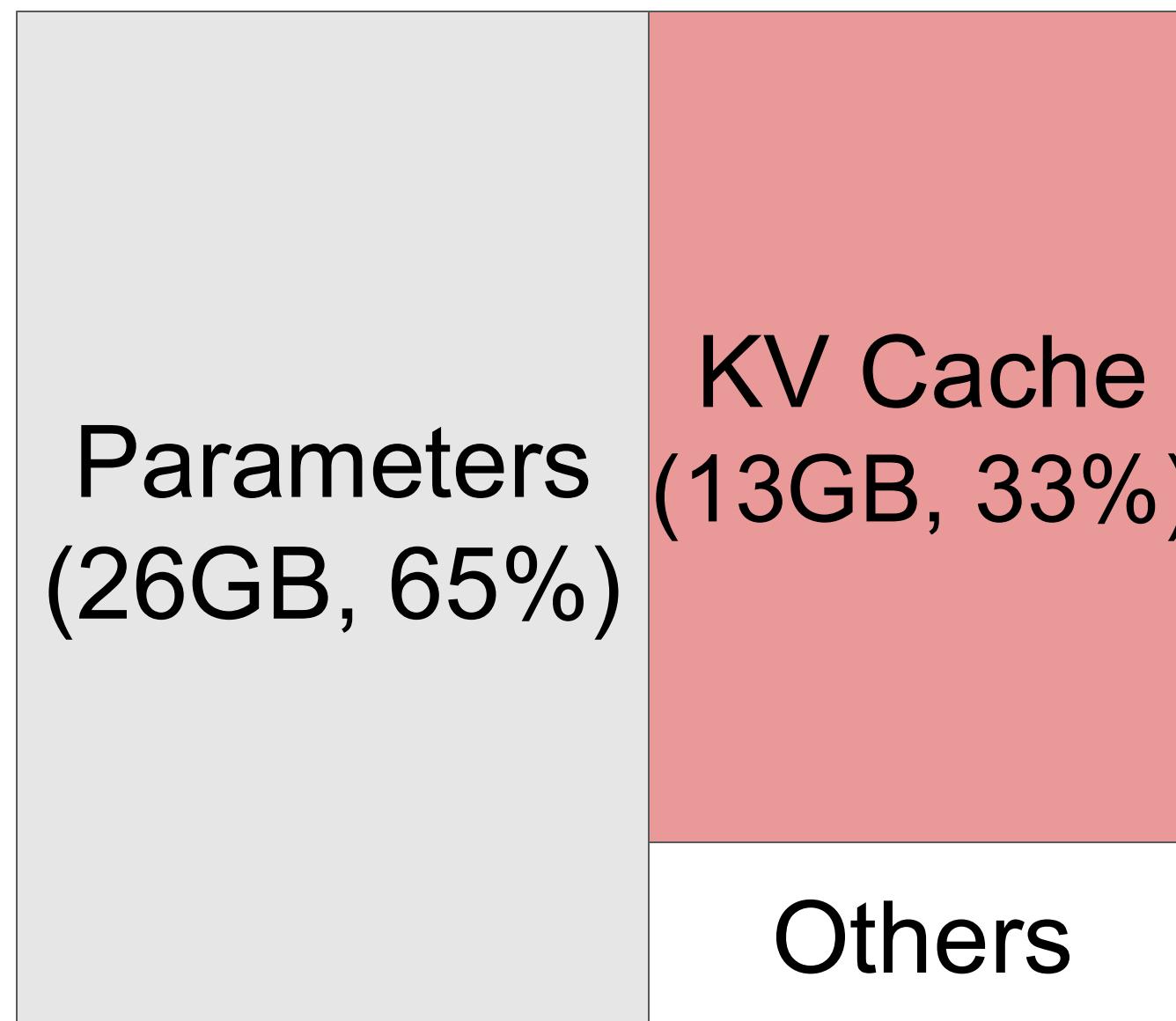
KV Cache

- Memory space to store intermediate vector representations of tokens
 - **Working set** rather than a “cache”
- The size of KV Cache dynamically grows and shrinks
 - A new token is appended in each step
 - Tokens are deleted once the sequence finishes

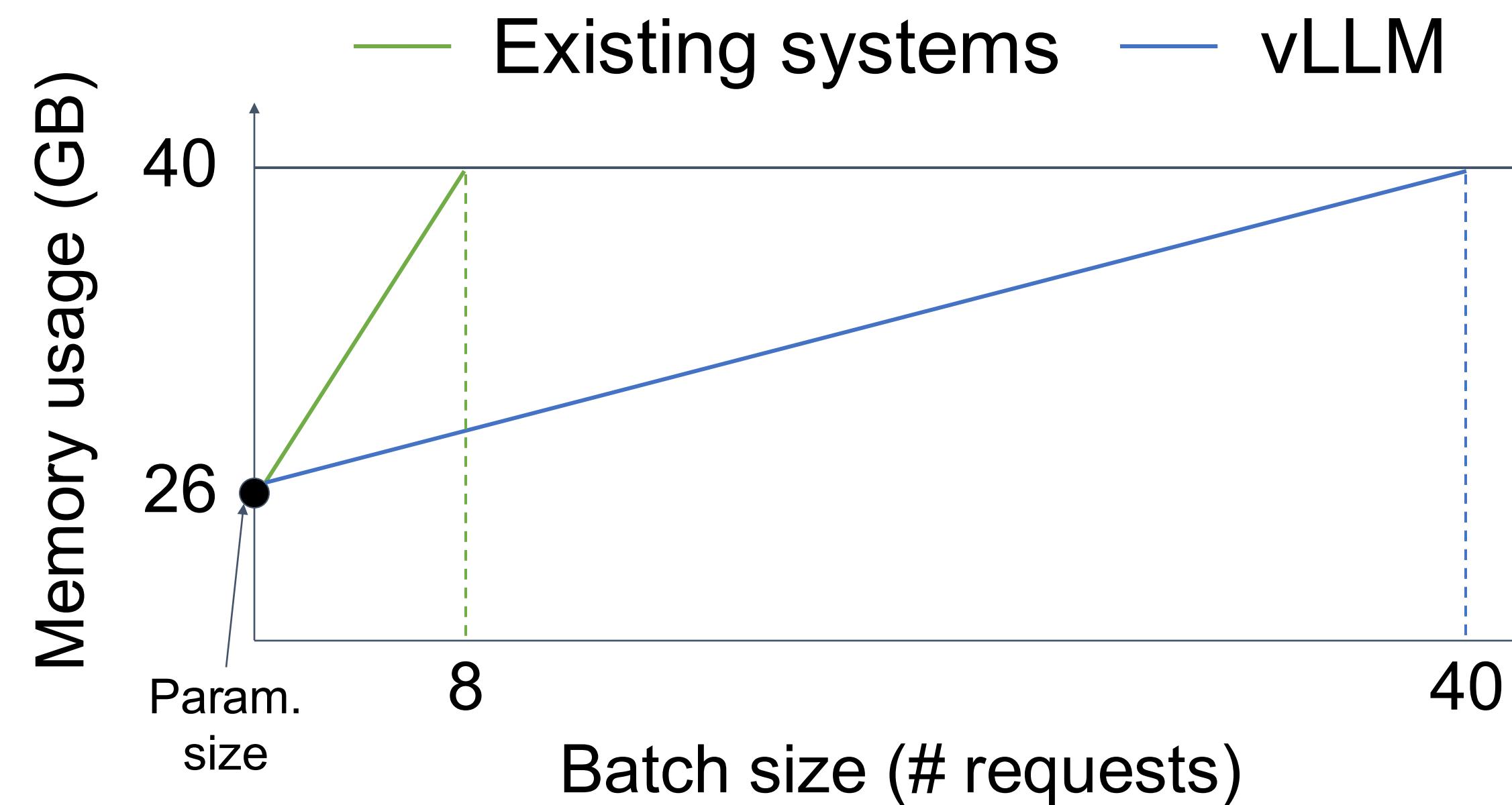


Key insight

Efficient management of KV cache is crucial for high-throughput LLM serving

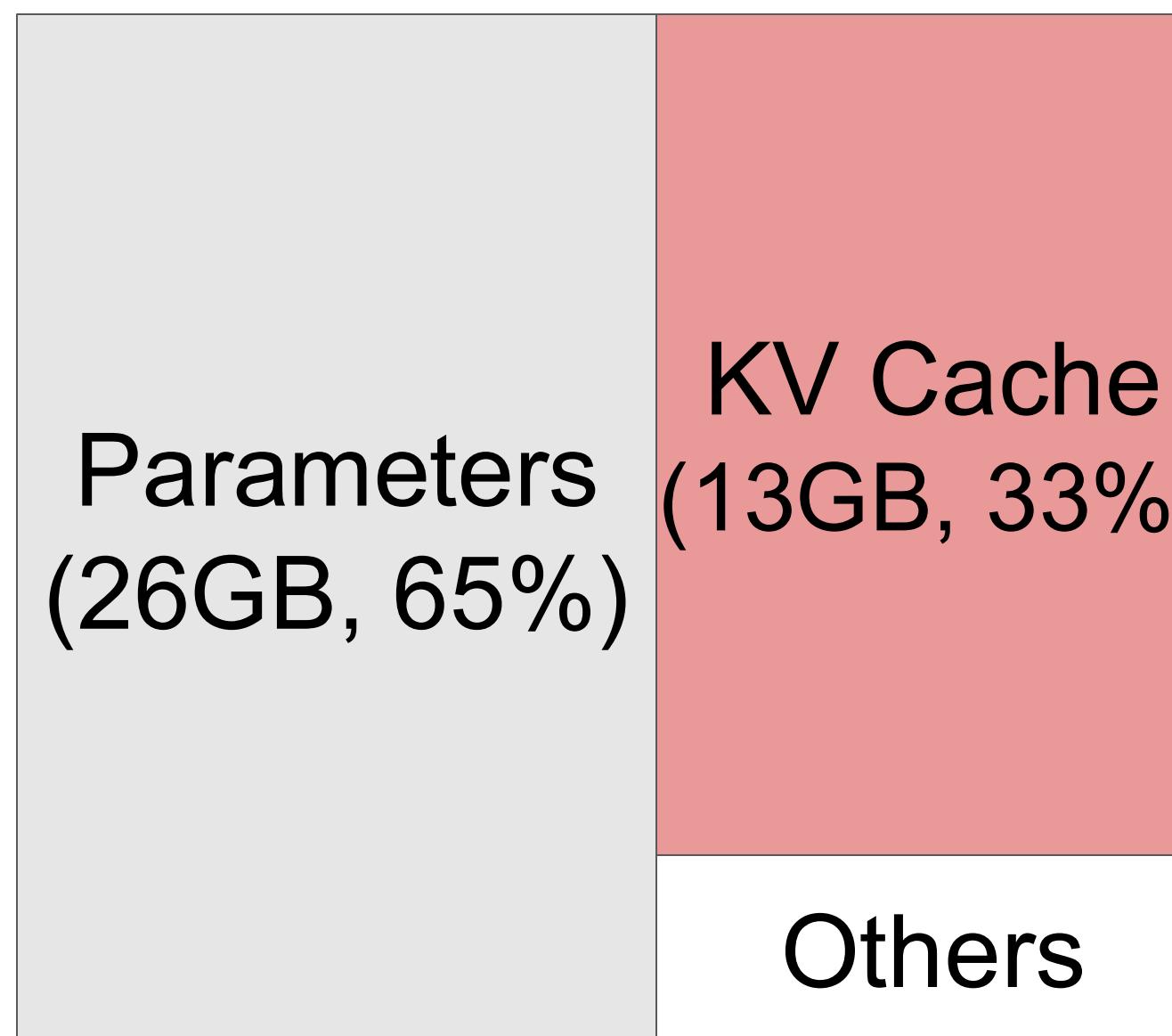


13B LLM on A100-40GB

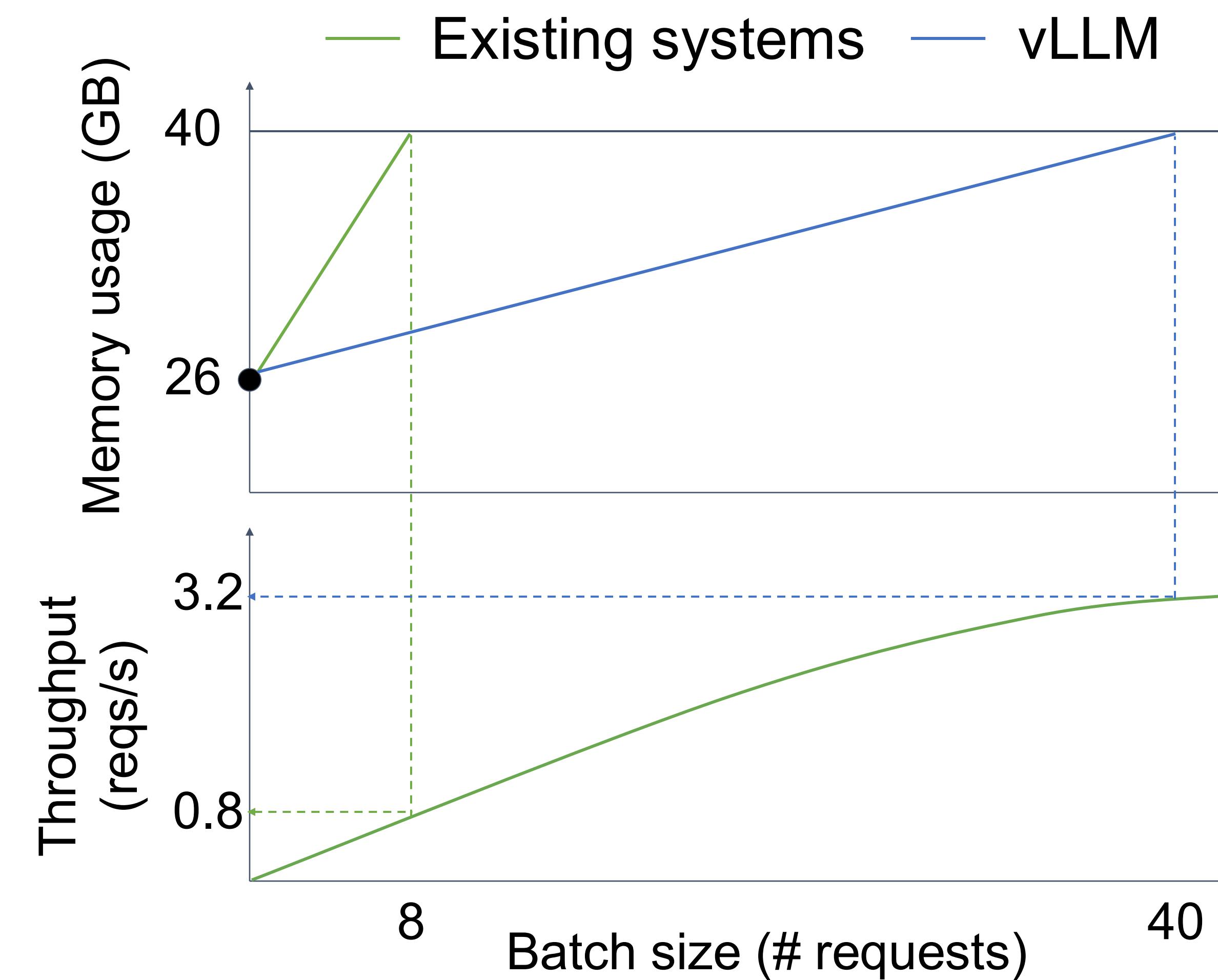


Key insight

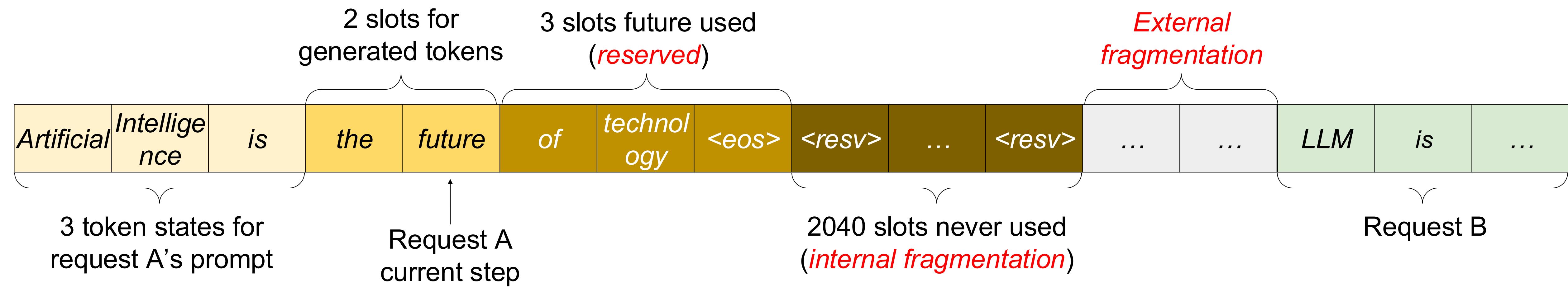
Efficient management of KV cache is crucial for high-throughput LLM serving



13B LLM on A100-40GB

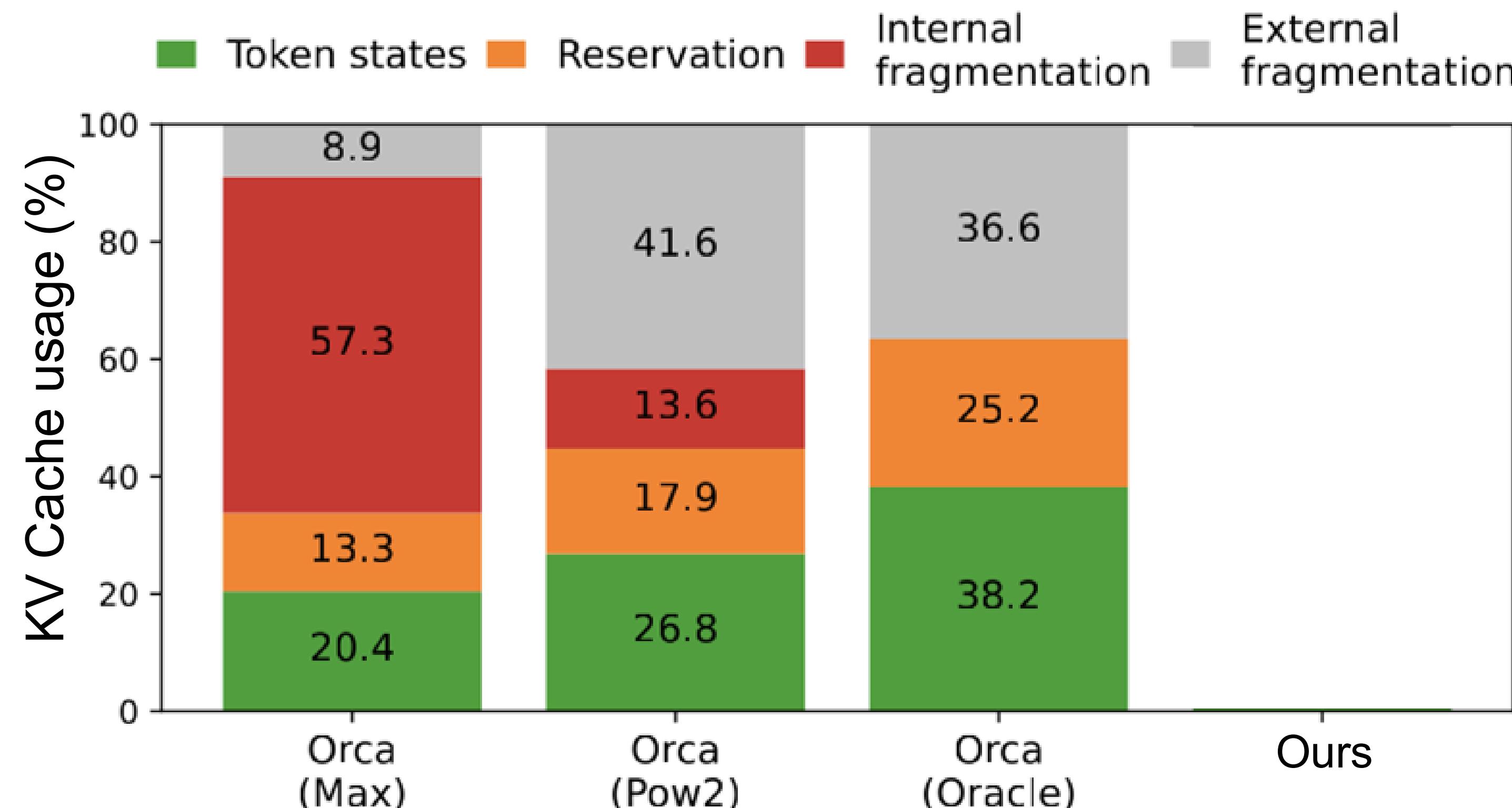


Memory waste in KV Cache



- **Reservation:** not used at the current step, but used in the future
- **Internal fragmentation:** over-allocated due to the unknown output length.

Memory waste in KV Cache



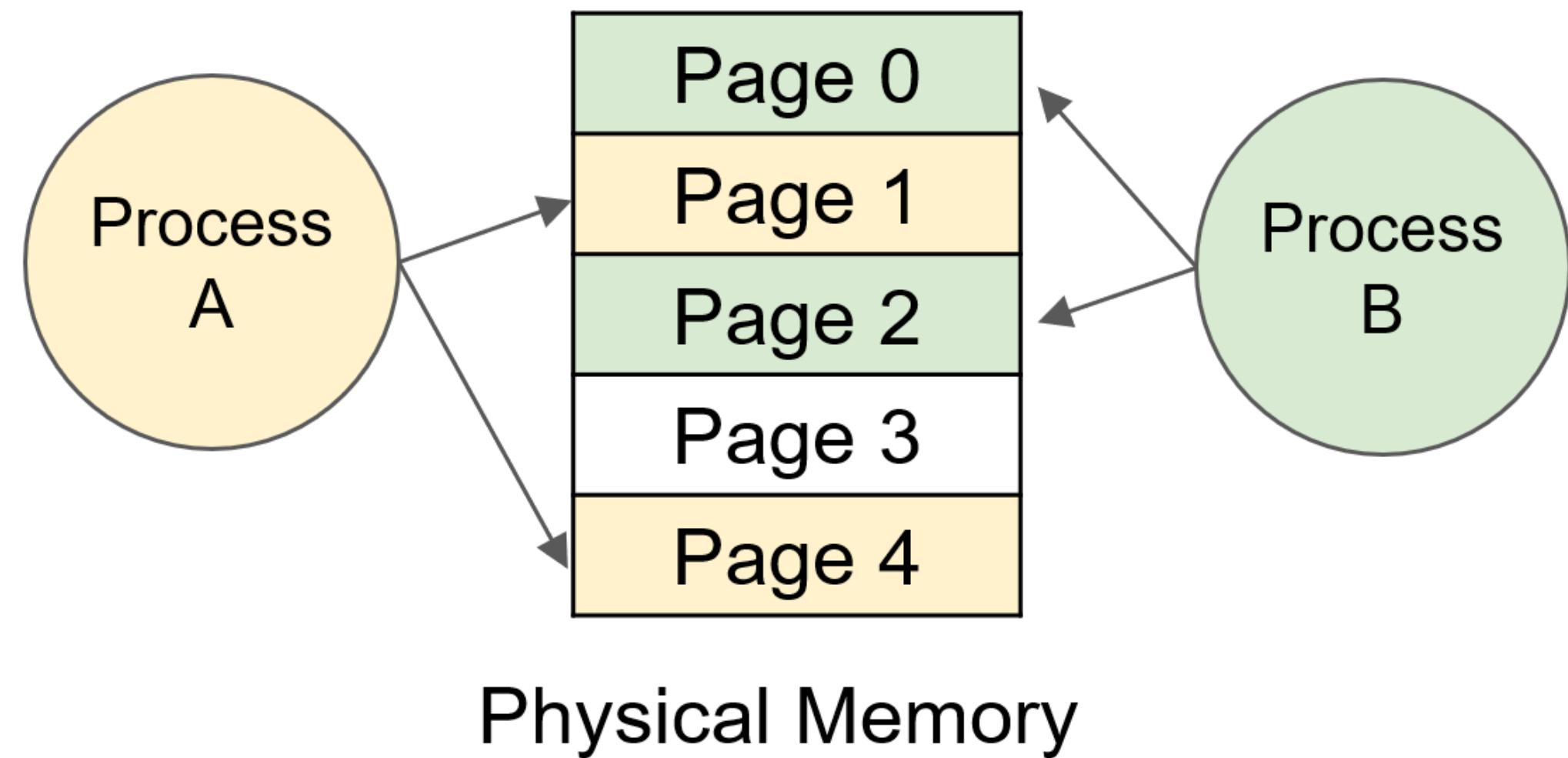
Only **20–40%** of KV cache is utilized to store token states

* Yu, G. I., Jeong, J. S., Kim, G. W., Kim, S., Chun, B. G. “Orca: A Distributed Serving System for Transformer-Based Generative Models” (OSDI 22).

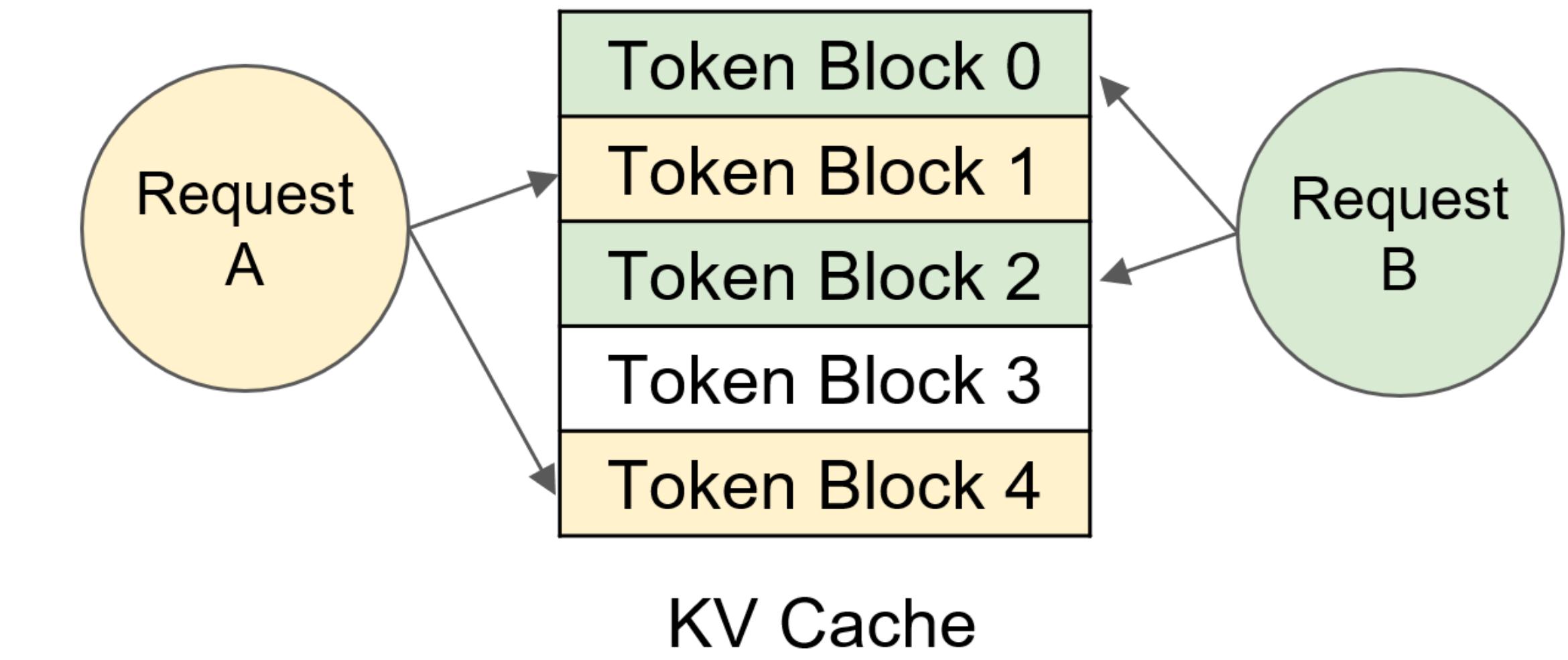
vLLM: Efficient memory management for LLM inference

Inspired by **virtual memory** and **paging**

Memory management in OS



Memory management in vLLM

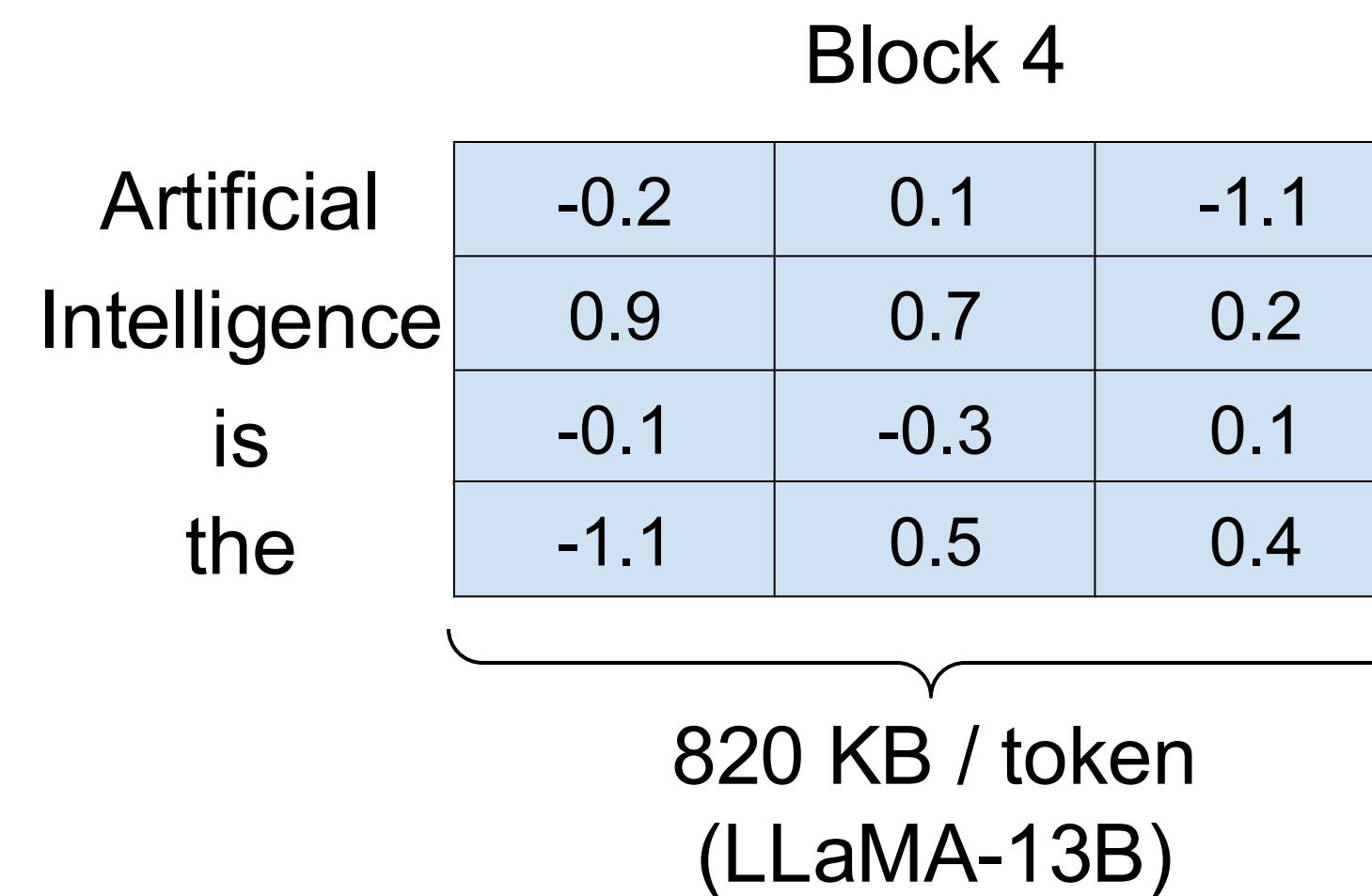
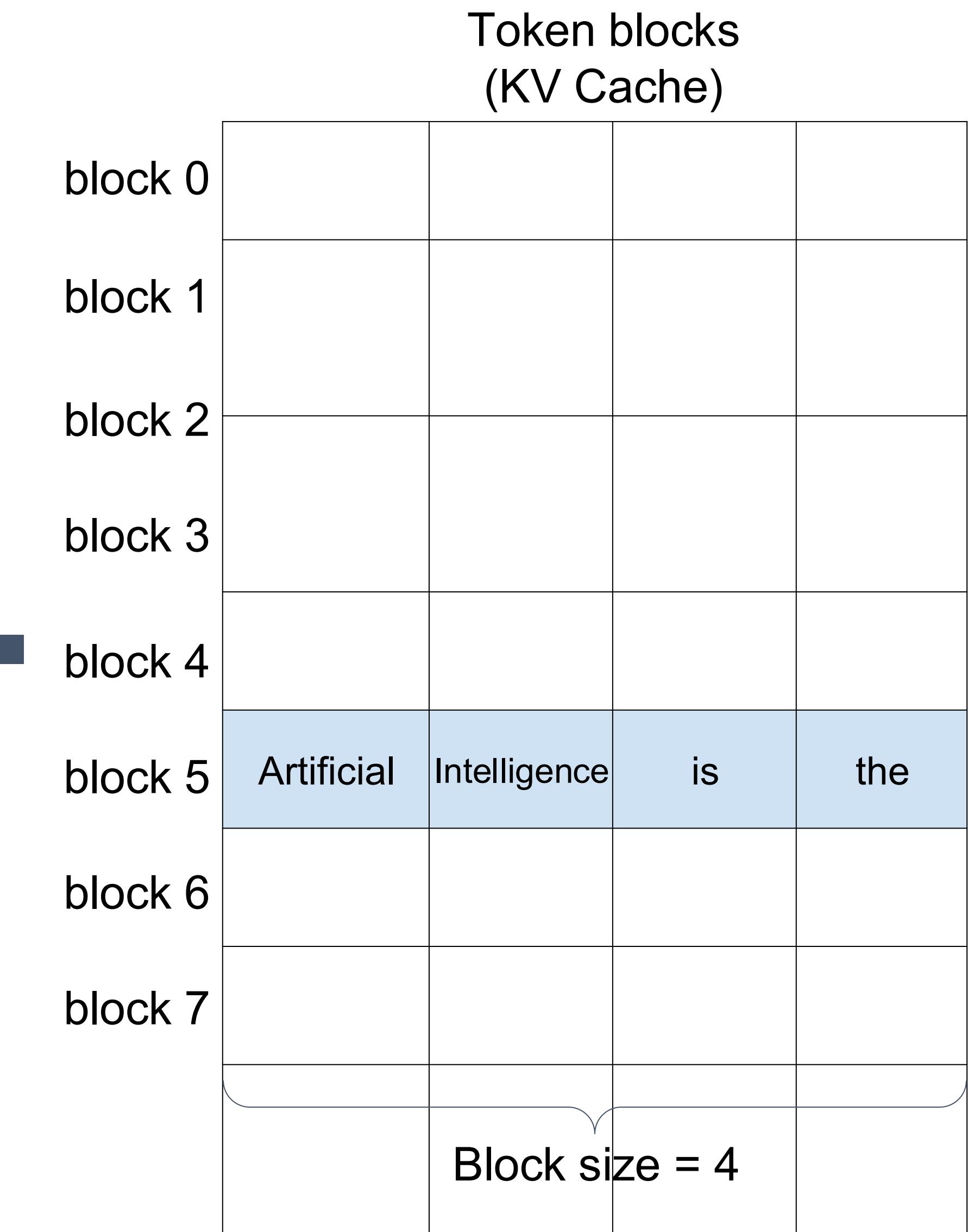


Token block

- A **fixed-size** contiguous chunk of memory that can store token states **from left to right**

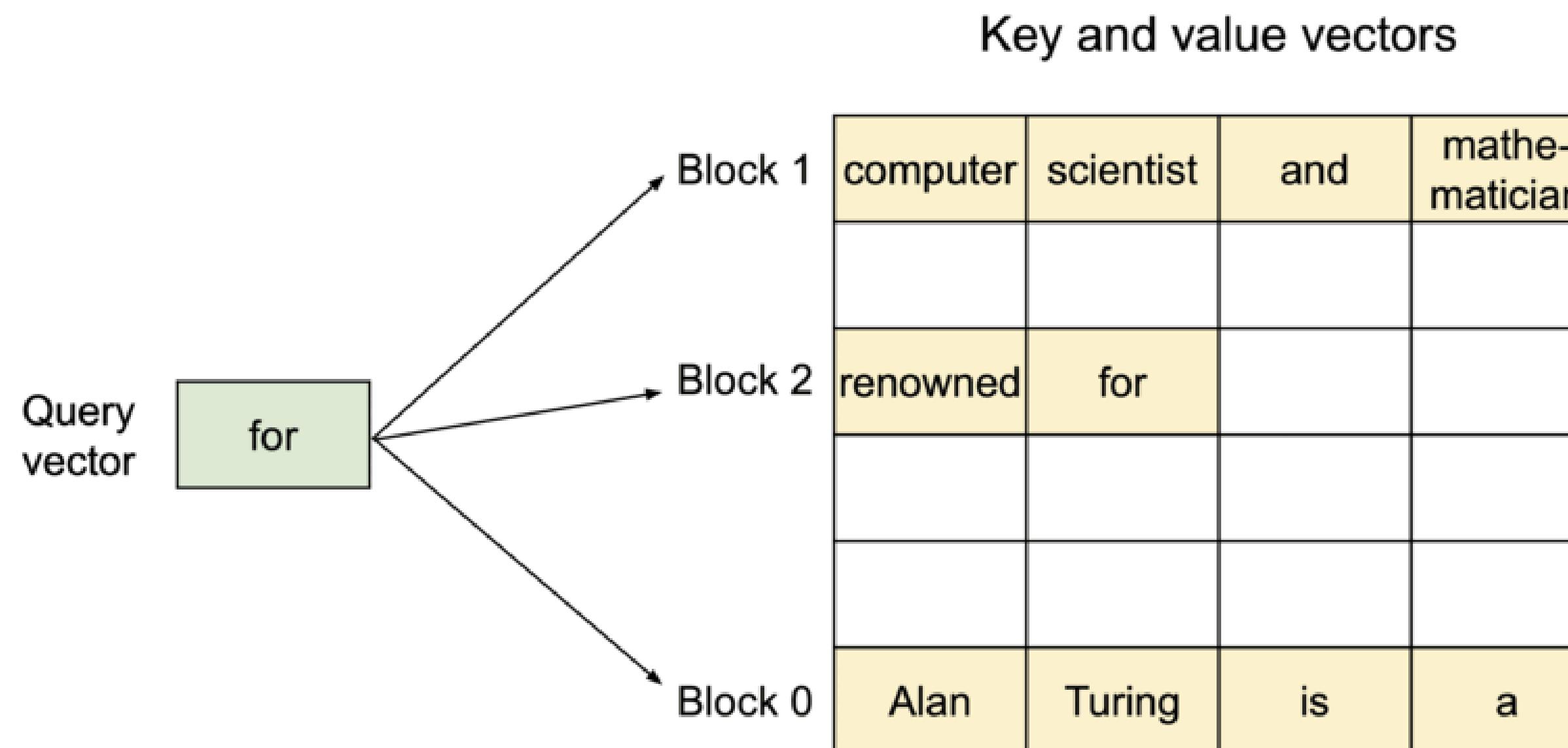
Token block

- A **fixed-size** contiguous chunk of memory that can store token states **from left to right**

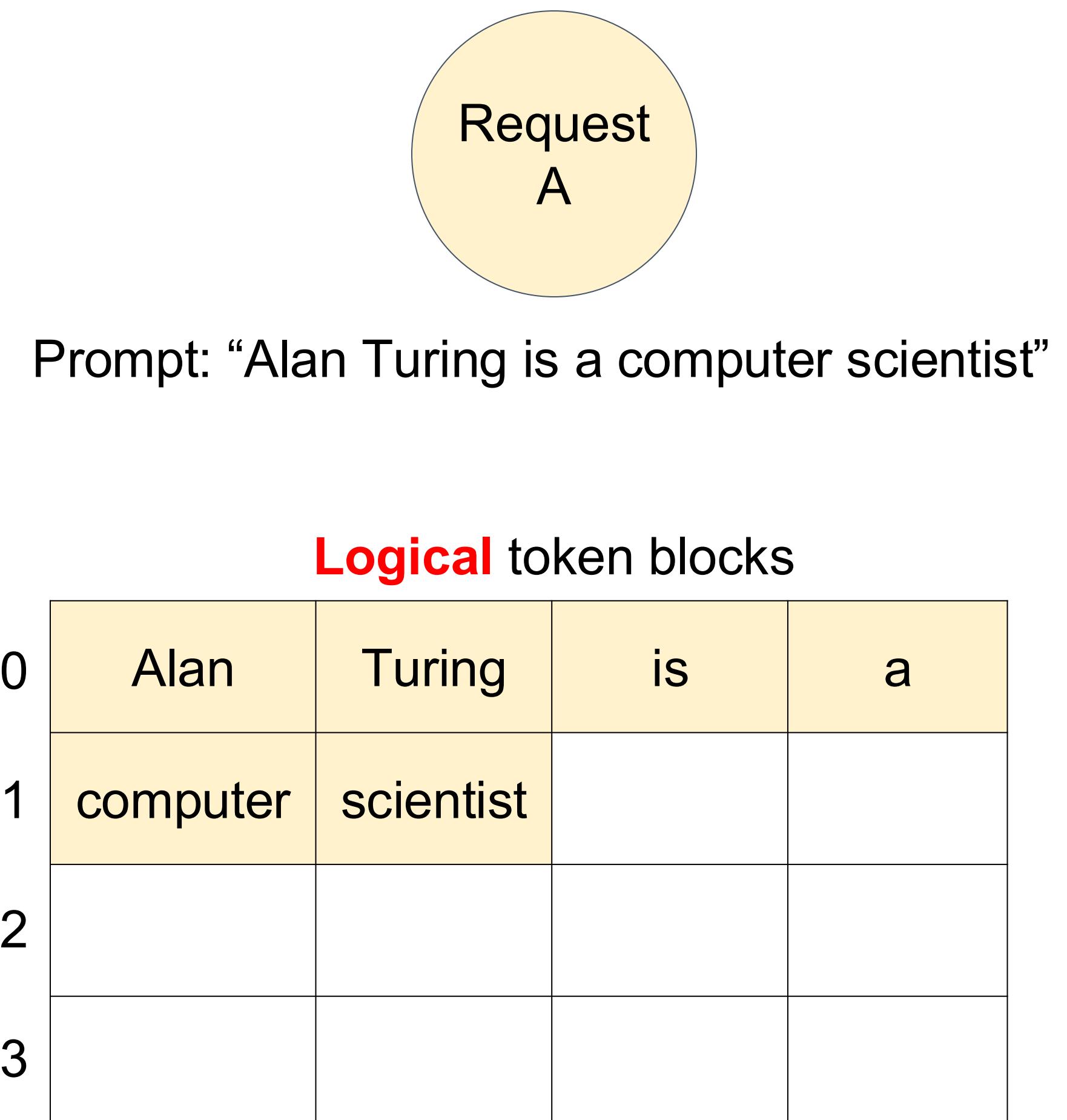


Paged Attention

- An attention algorithm that allows for storing continuous keys and values in non-contiguous memory space



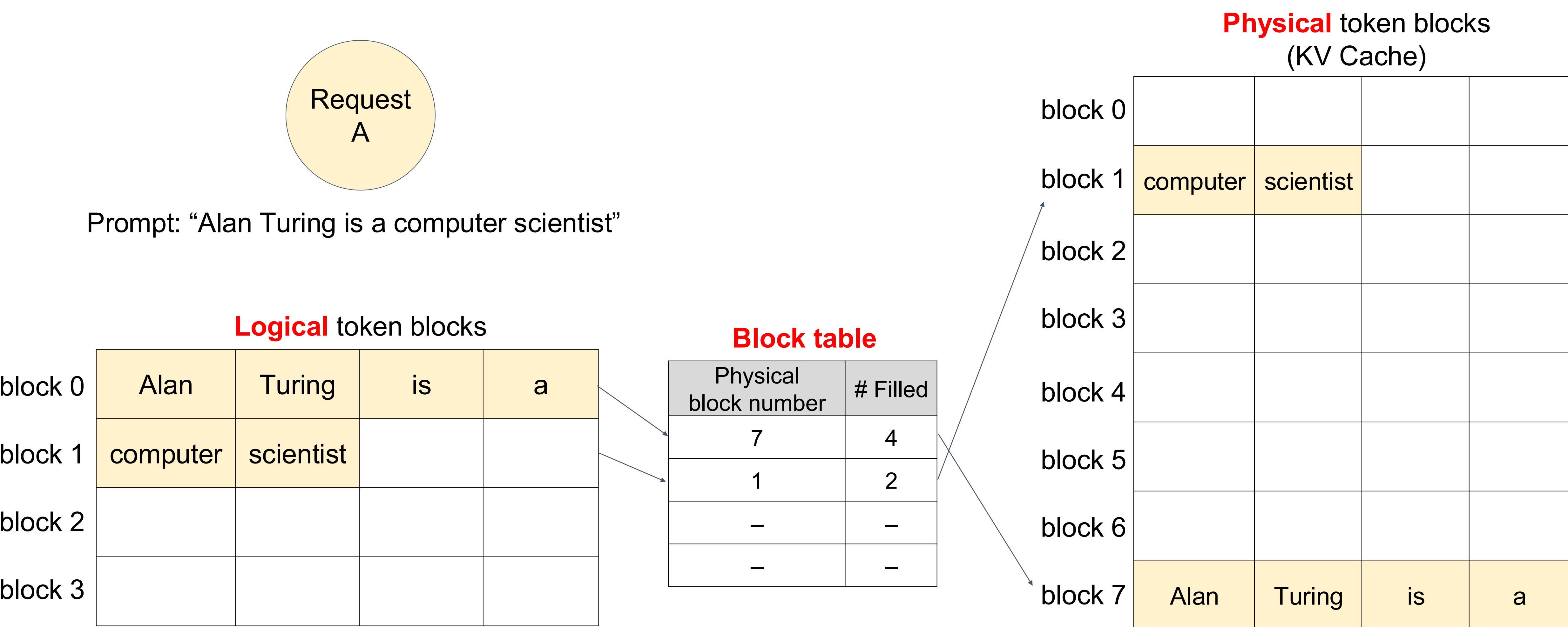
Logical & physical token blocks



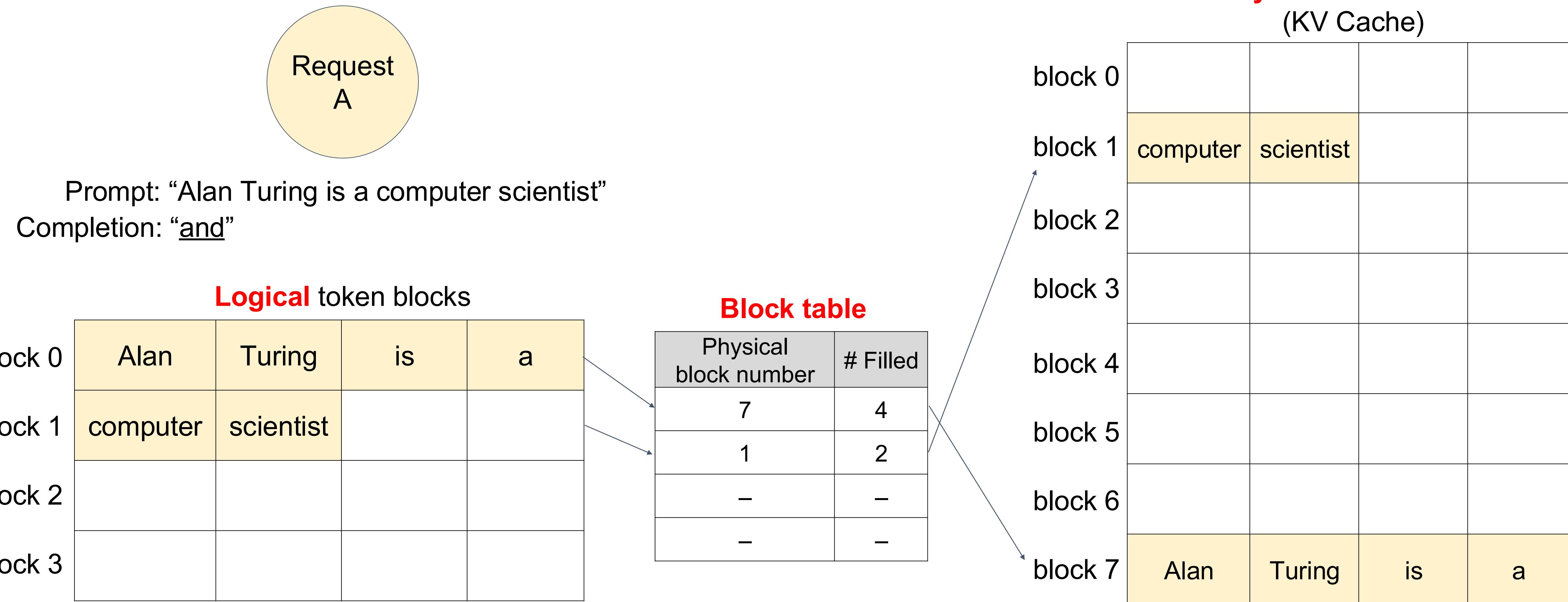
Physical token blocks (KV Cache)

block 0			
block 1			
block 2			
block 3			
block 4			
block 5			
block 6			
block 7			

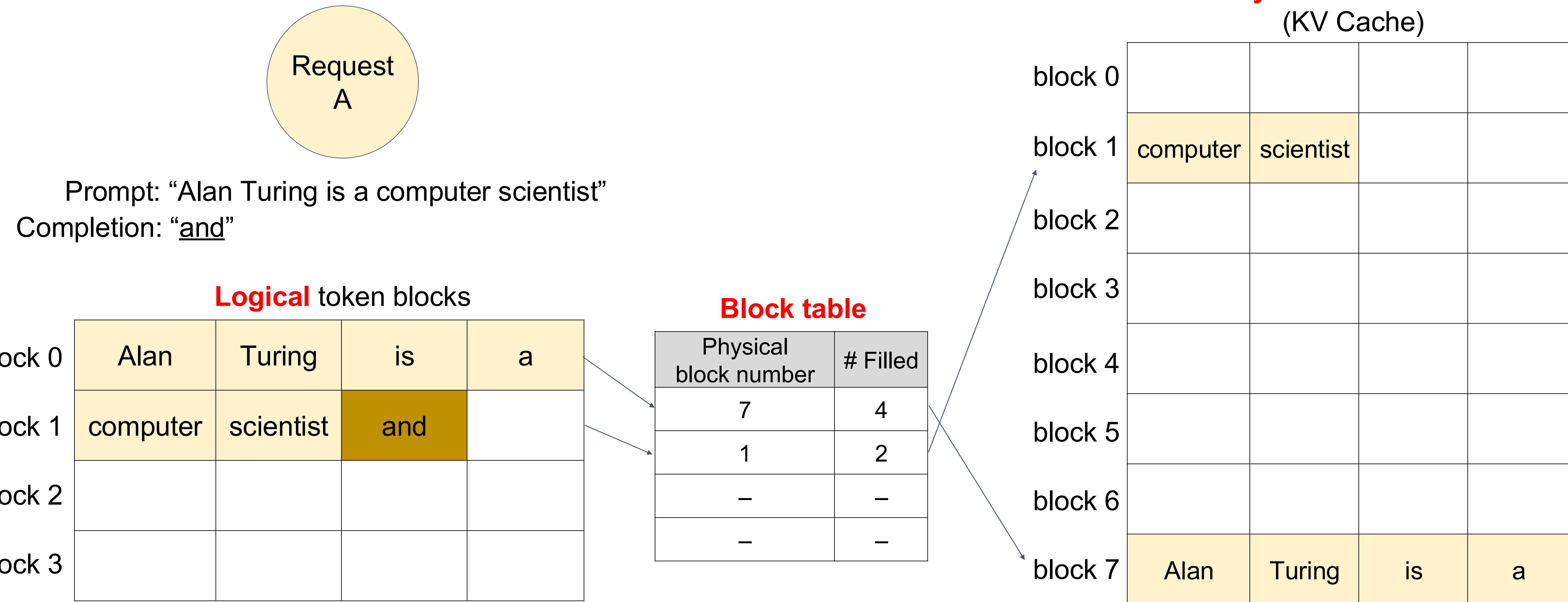
Logical & physical token blocks



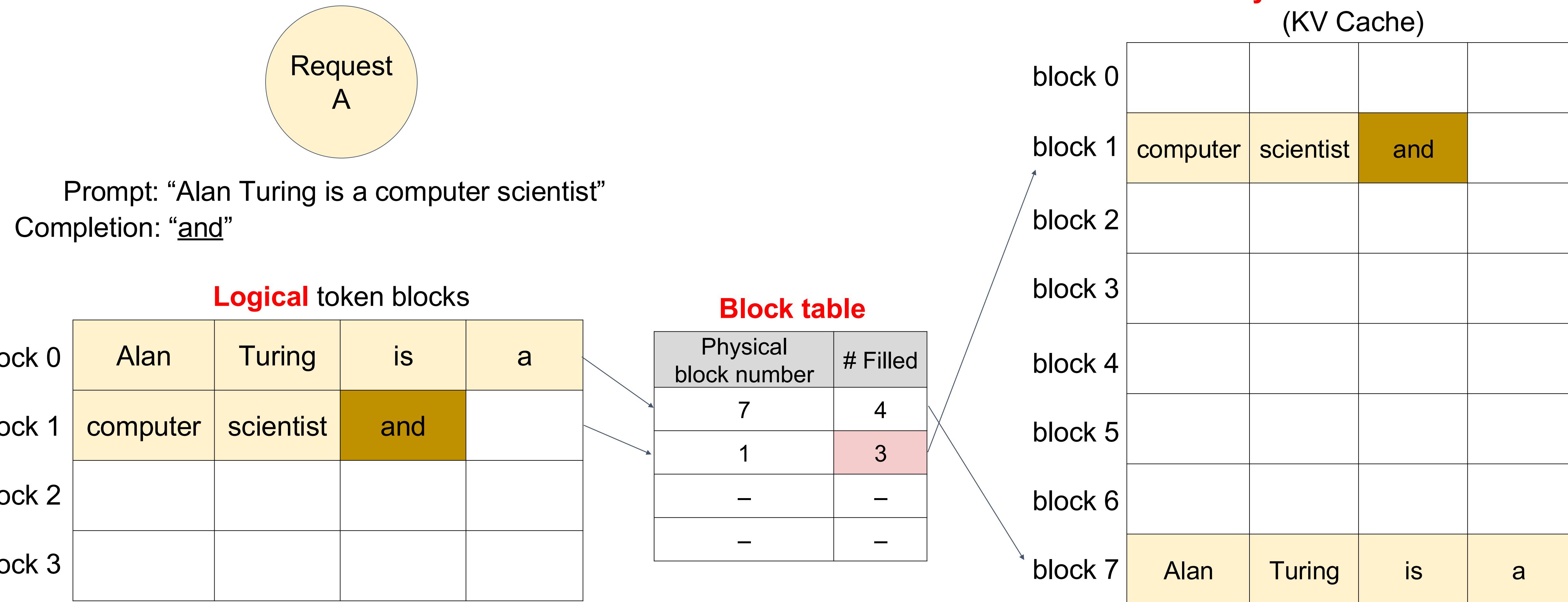
Logical & physical token blocks



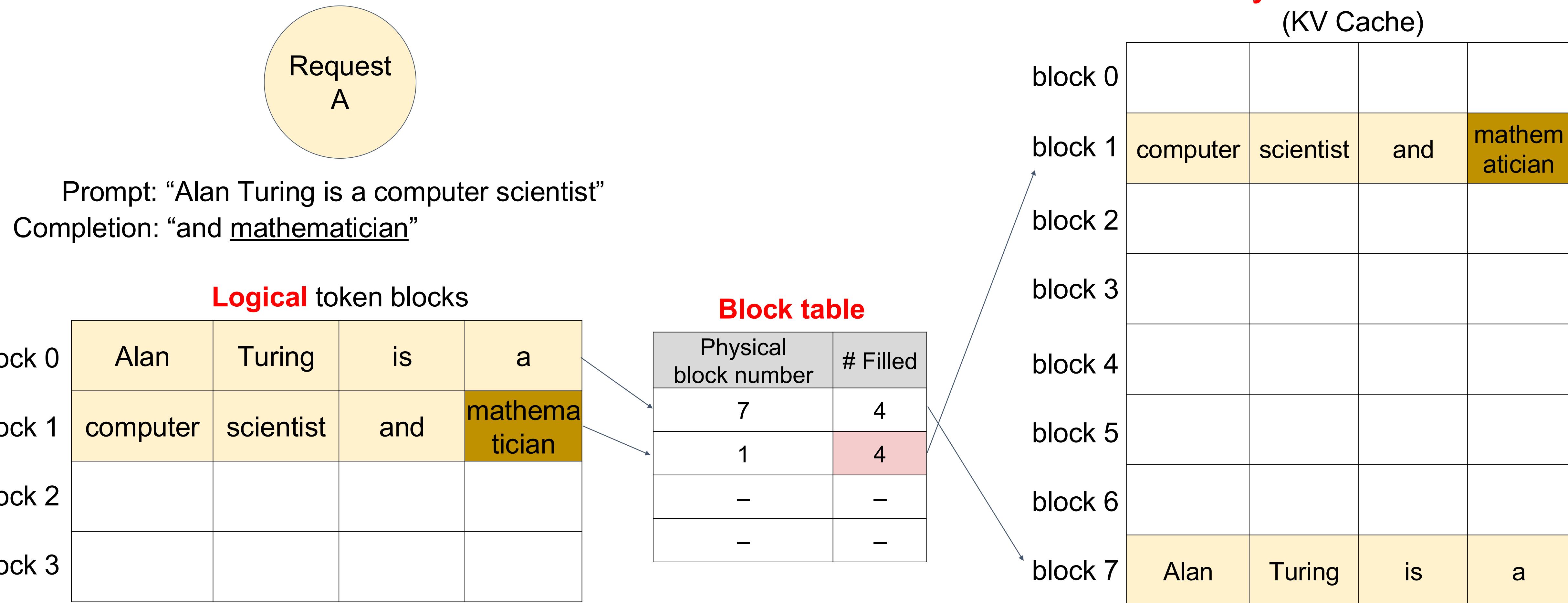
Logical & physical token blocks



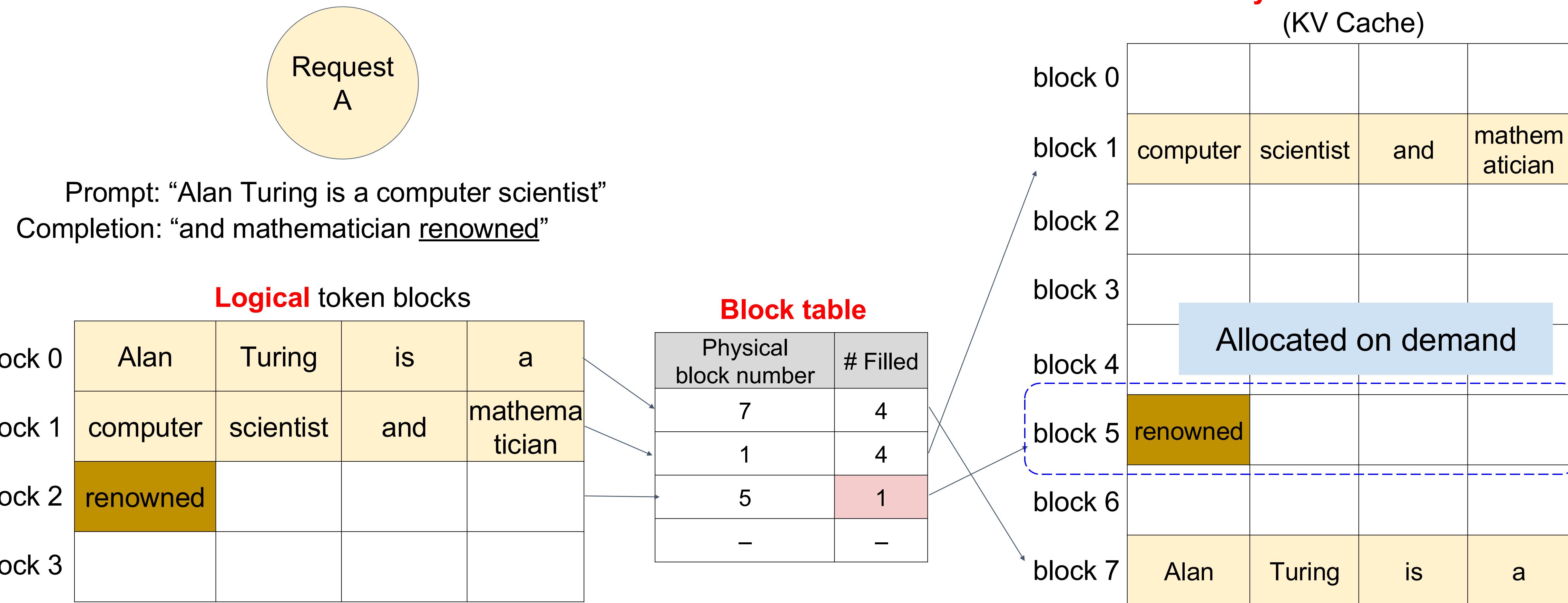
Logical & physical token blocks



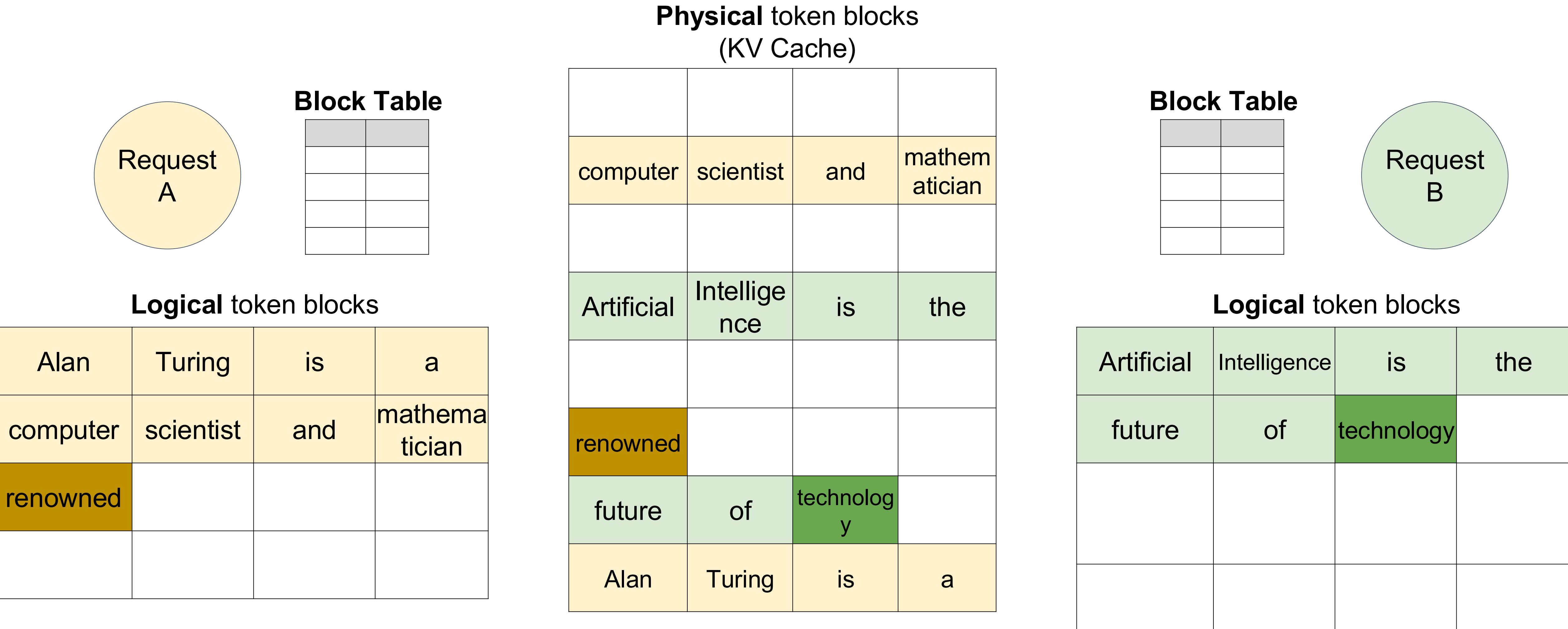
Logical & physical token blocks



Logical & physical token blocks



Serving multiple requests



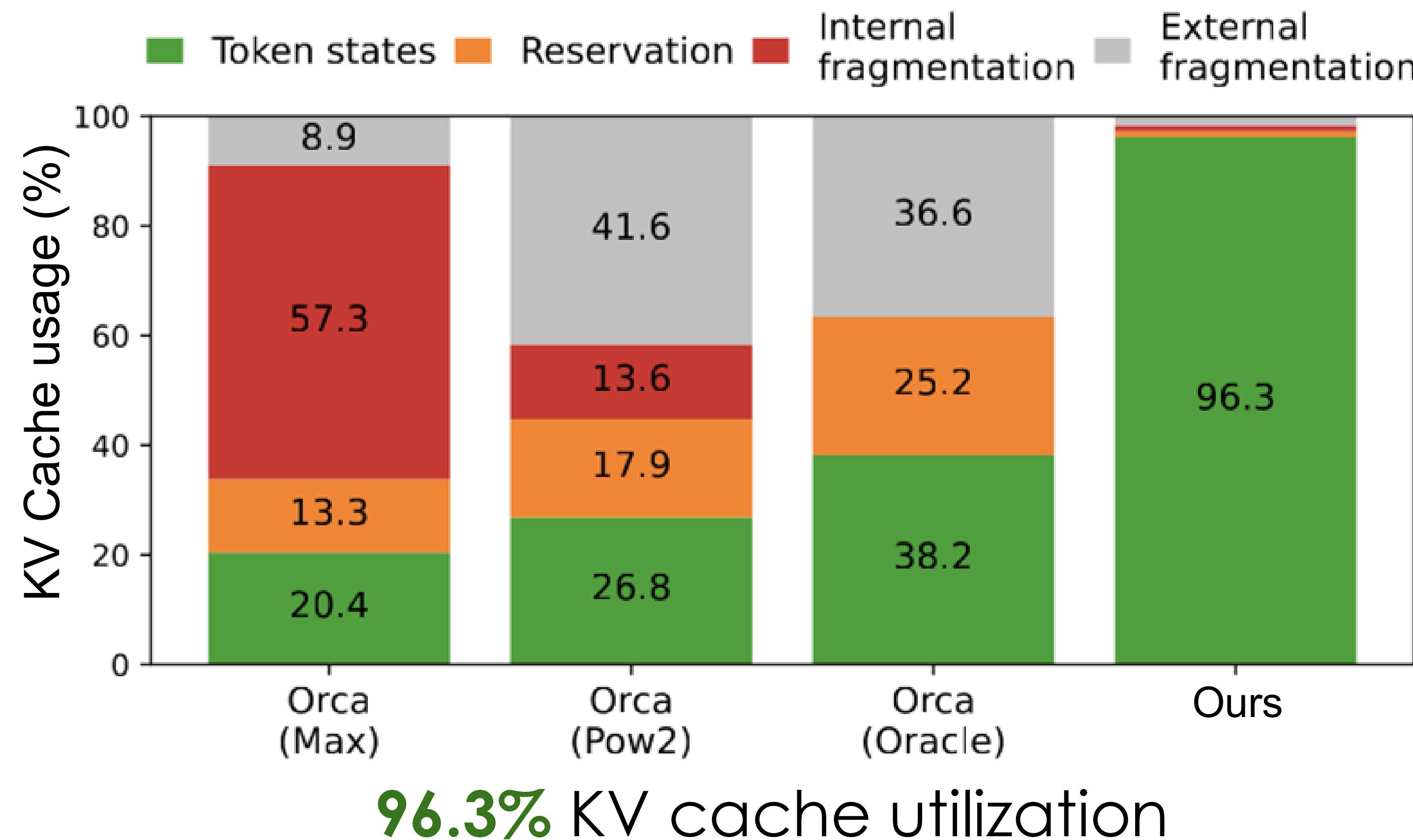
Memory efficiency of vLLM

- Minimal internal fragmentation
 - Only happens at the last block of a sequence
 - **# wasted tokens / seq < block size**
 - Sequence: $O(100) - O(1000)$ tokens
 - Block size: 16 or 32 tokens
- No external fragmentation

Alan	Turing	is	a
computer	scientist	and	mathematician
renowned			

Internal fragmentation

Effectiveness of PagedAttention



Other Inference Techniques

- Speculative Decoding
- Disaggregated Serving
- Prefix caching
- Chunked prefill