https://hao-ai-1lab.github.1o/dsc204a-125/

DSC 204A: Scalable Data Systems
Fall 2025

Staift
Instructor: Hao Zhang
TAs: Mingjia Huo, Yuxuan Zhang

¢ @haozhangml) @haoailab
haozhang@ucsd. edu

https://twitter.com/haozhangml

LOoQistiCS

* Fall 2025 Student Evaluations of Teaching were sent
* Completion rate as of today:
* 58%
* 65%
* Exam recitation session: next Monday evening (exact time TBD)
* Compensation Lecture:
* Next Thursday (Dec. 11, 1Tam - Tpm, on zoom), after exam
(hence exam will not cover questions there)
* Will cover training

Connecting the Dots: Compute/Comm characteristic of

LLMS

Key characteristics: compute, memory, communication

* calculate the number of parameters of an LLM?¢
®* calculate the flops needed to train an LLM¢

®* calculate the memory needed to train an LLM?¢

Qutput
Probabilities

Add & Norm

Feed
Forward

Add & Norm

Masked
Multi-Head
Attention

Input
Embedding

Inputs

Nx

Positional
Encoding

@

Large Language Modaels

® Transformers, Attentions
* Serving and inference
® Parallelization

* Attention optimization

INnference process of LLMs

Output the future of
Layer N Layer N Layer N
Layer 1 Layer 1 Layer 1
—r—

Input Artificial Intelligence is 1 the 1 future

Repeat until the sequence
Reaches its pre-defined maximum length (e.g., 2048 tokens)
Generates certain tokens (e.g., "<|end of sequence|>")

Generative LLM Inference: Autoregressive Decoding

* Pre-filling phase (O-th iteration):
®* Process all input tokens at once
* Decoding phase (all other iterations):
®* Process a single token generated from previous
Iteration

®* Key-value cache:
® Save atftention keys and values for the following
iteraftions to avoid recomputation
* what is KV cache essentiallye

(h, n, d)

w/ KV Cache vs. w/o KV Cache

(b, s,n,d) (b, s, n,d)

(b, s, n, d)
(h, n, d)
(b, s, n, d)
(h, n, d)

(b? S! n? d)

(9 &

Y

o~

OK'

-

(b, s, n, d)
7]

Y

b softmax(JZ{)

(b, n,s,s)

>[Multiply V }—»

(b, s, n, d)

(h, h)

Wo

utput

Output

(b, s, h)

Step 1

Q

Query Token 1

(1, emb_size)

| UX0) A9y

(emb_size, 1)

QK

Values that will be masked

QK'

(1, 1)

V

Value Token 1

(1, emb_size)

Attention

Token 1

(1, emb_size)

Zoom-in! (simplified without Scale and Softmax)

w/ KV Cache vs. w/o KV Cache

Step 1 '
Q KT QKT Y, Attention
Query Token 1 ~ Q,K, Value Token 1 Token 1
s S
8 o
nembszo embszen QT:0MNEtHEPRENRS QN KV.cache In prefil phase™?
--- Q2:Do we needtocache Q?
Q KT QKT Attention
Query Token 1 - QK Value Token 1 Token 1
(1, emb_size) (emb_size, 1) (1, 1) | (1, emb_size) (1, emb_size)

Values that will be masked Values that will be taken from cache

Potential Bottleneck of LLM Inference®@¢

(h,)

|(h, n, d)

, SR ITQ (b, 5.0, d) (b, 5, 0.) (b, s,n, d) B
W russ) 0 J(b,s,n,d) g][K 1 [4] W upa
We Jbna OK™ | p——
RMS Norm ! s ysoftmax(\/3) J Multiply V Output
§) K (b, s, n, d) \)
(b, s, h) : > (b5 5) (b, s, n, d) (b, s, h)
W,) o
— ! . e
V- J(b,s,n,d)

* Compute:
* Prefill: largely same with fraining
®* Decode:s =1
* Memory
* New: KV cache
* Communication
* mostly same with training

(h,)

WRMS 2

!

RMS Norm

—>

(b, s, h)

gate

|(h, 1)

gate

(b,s, 1

up

(b, s, i

(h, 1)

(1, h)

{ SiGLU H r |
(b, s, h)

(b, s, 1)

Q7? how about batch size b?

Serving vs. Inference

large b b="1

olOry
o

Serving. many requests, online Inference: fewer request,
traffic, emphasize cost-per-query. low or offline traffic,
s.t. some mild latency constraints emphasize latency

emphasize throughput

argeb gR@Re
| sonving (S OR®
Potential Boftleneck of LLM Inference In Serving fa)

(h,) R I/TQ) (b, n, d) (b,s,n, d)(b,s,n,d) (b, s, n, d) ; (b, b) \ ’)) — Wgate (2 (1, h)
WRMS 1 Q) (b, s, 1, d) Q][K 1 [4] WOutpuz‘ WRMS 2 s = \ @
’ We Jhnd | OK"]) ’ : ‘“ , ' \ - te J _ |
RMS Norm ;{ \ i softmax(J) J >[Multiply V }—’ Output RMS Norm (b, s, 1) SwiGLU Down }
J®b,snd || \ ' ~ ‘ (|(h, i
(b, s, h) ! b.ns.9) (b, s, n, d) (b, s, h) (b, s, h) Wup (b 1) (. 5. 1) (b, s, h)
Wy, |(hn,d) x ‘, J , S,
— ~ v ~ - — (——
V' |(b,s,n,d) up
“ (b,s.1)

* Compute:
* Prefill:

* Different prompts have different length: how to batche
* Decode

* Different prompts have different, unknown #generated tokens
* s=1,bislarge
* Memory
* New: KV cache

* pbislarge -> KV is linear with b -> will KVs be large®e
* Communication

* mostly same with training

Potential Boftleneck of LLM Inference Iin Serving

(h,)

|(h, n, d)

|\ VTQ (b,s,n,d) (b,5,n,d) (b, 5,1, d) (hh)
WRMS 1 Q) (b, S, 10, d) Q][K 1 [V] WOutpuz‘
¢ WK (h, n, d) (Q KT] = p I
RMS Norm ! s ysoftmax(\/3) J »[Multiply V }—» Output
K b d .
(b, s, h) Jb.5. .) | (b, s, n, d) (b, s, h)
N (b, n,s,s)
WV) (h, n, d)
— v . —_—
Ve (b,s,n,d)

* Compute:
* Prefill:

= Differentorompishave-differen

* Decode

(h,)

WRMS 2

!

RMS Norm

—>

(b, s, h)

}

* Different prompts have different, unknown

® s=1, b=]

* Memory
* New: KV cache
B l’\ —1 (a¥a¥a VAV alla

e Communication
* mostly same with training

b=1

74 t. i, h)

gate

gate ‘
(b,5,1) { SwiGLU H Down]
74 (01 (b, 5. h)

“p) (b, s, 1)

up

(b, s, 1)

generated fokens

Problems of bs = 1

|
max Al = Hops / #Hbytes

Recap: Inference process of LLMs

Output the future of
Layer N Layer N Layer N
Layer 1 Layer 1 Layer 1
—r—

Input Artificial Intelligence is 1 the 1 future

Repeat until the sequence
Reaches its pre-defined maximum length (e.g., 2048 tokens)
Generates certain tokens (e.g., "<|end of sequence|>")

Problem of bs = 1

Latency = step latency ™ # steps

/

Speculative decoding reduces this, hence amortize the
memory moving cost (but it may increase compute cost)

large b
Large Language Modaels

Serving and inference optimization
* Continuous batching

* Paged attention

LLM Decoding Timeline

EEE

] e]

17

Batching Requests to Improve GPU Performance

Issues with static batching:
» Requests may complete at different iterations

* |dle GPU cycles
* New requests cannot start immmediately

18

Continuous Batching

Benefits:
* Higher GPU utilization
* New requests can start immediately

Orca: A Distributed Serving System for Transformer-Based Generative Models. OSDI'22

19

Continuous Batching Step-by-Step

» Recelves two new requests R1 and R2

R1: optimizing ML
systems

R2: LLM serving is

Request Pool
(CPU)

Execution Engine
(GPU)

20

Continuous Batching Step-by-Step

 [teration 1: decode R1 and R2

Request Pool
(CPU)

R1: optimizing ML
systems

R2: LLM serving is

Execution Engine
(GPU)

C

lteration 1

21

Continuous Batching Step-by-Step

e [teration 1: decode R1 and R2

(h,)

WRMS 1

RMS Norm

(b, s, h)

(h,)

WRMS 2

RMS Norm

(b, s, h)

Vo J0nd G namsng (b, 5.0, d) UL
0 Josna |2 J K | s W uip
\ — * |) I
W, (h, n, d) K"’ (
- :] Soﬁmax (O)1 >[Multiply V }—P Output
K (b, s, n, d) \/‘? } X
g ‘ (b, s, n, d) (b, s, h)
\ (b, n, s, s)
WV) (ha n, d)
3 —
Vo Jb,s,n,d)
|9 -
—> Wgate — (l’ h)
ga le ‘
(ba S, 1) { SWZ.GL U H Down }
|(h, 1)
Wup | . 5.1) (b, s, h)
up D
(b, s, 1)

Q: How to batch these?

Maximum seyrving batch
size = 3

R1: optimizing ML

sysiems

Execution Engine
(GPU)

C

lteration 1

Continuous Batching Step-by-Step

» Receive a new request R3; finish decoding R1 and R2

Maximum serving batch
size = 3

R1: optimizing ML
systems

R2: LLM serving Is

Request Pool Execution Engine
(CPU) (GPU)

C

lteration 1

23

Continuous Batching Step-by-Step

(h,)

WRMS 1

RMS Norm

) (h, n, d)

(b, s, h)

(h,)

WRMS 2

RMS Norm

(b, s, h)

I{/Q (b, 5,0, d) (b, 5, . d) (b,s,n, d) (b, b)
0 Josna |2 J K | s W uip
\ — ' |) I
W, (h, n, d) K"’ (
- :] Soﬁmax (O)1 >[Multiply V }—» Output
K (b, s, n, d) \/‘? } X
g ‘ (b, s, n, d) (b, s, h)
\ (b, n, s, s)
WV) (ha n, d)
3 —
Vo Jb,s,n,d)
(h, 1) .
W e - (i, h)
gate :
(ba S, 1) { SWiGL U H Down }
|(h, 1)
Wup | . 5.1) (b, s, h)
up N
(b, 5, 1)

Q: How to batch these?

» Receive a new request R3; finish decoding R1 and R2

Maximum serving/batch
size = 3

R1: optimizing ML

systems requires

R2: LLM serving is

critical.

Execution Engine
(GPU)

C

lteration 1

Traditional Batching

» Receive a new request R3; finish decoding R1 and R2

Maximum serving batch
size = 3

R1: optimizing ML

R4:Adogis _
systems requires ML

R2: LLM serving is

R5: How are
critical. <EOS>

Request Pool Execution Engine
(CPU) (GPU)

C

lteration 2

25

Continuous Batching

* |teration 2: decode R1, R2, R3; receive R4, R5; R2 completes

Maximum serving batch

R4: A dog is Size =3

R1: optimizing ML
systems requires ML

R2: LLM serving is

critical. <EOS>

Request Pool Execution Engine
(CPU) (GPU)

C

lteration 2

20

Continuous Batching

(h,)

WRMS 1

RMS Norm

(b, s, h)

(h,)

WRMS 2

RMS Norm

(b, s, h)

Vo J0nd G namsng (b, 5.0, d) UL
0 Josna |2 J K | s W uip
\ — * |) I
W, (h, n, d) K"’ (
- :] Softmax (O)] >[Multiply V }—P Output
K (b, s, n, d) \/‘? } \
/ ~ (b, s, n, d) (b, s, h)
\ (b, n, s, s)
WV) (ha n, d)
3 —
Vo Jb,s,n,d)
|9 -
Wgate — (i, h)
ga le ‘
(ba S, 1) { SWiGL U H Down }
|(h, 1)
Wup . 5.1) (b, s, h)
up D
(b, s, 1)

Q: How to batch these?
* |teration 2: decode R1, R2, R3; receive R4, R5; R2 complete

Maximum serving batch
size = 3

R1: optimizing ML
systems requires ML

R2: LLM serving is

critical. <EOS>

Execution Engine
(GPU)

C

lteration 2

Traditional vs. Continuous Batching

* |teration 2: decode R1, R2, R3; receive R4, R5; R2 completes

Maximum serving batch Maximum serving batch
size = 3 size = 3

R4: Adogis

R1: optimizing ML

systems requires ML .
R1: optimizing ML

systems requires ML
R2: LLM serving is

critical. <EOS>

R2: LLM serving is

critical. <EOS>

Request Pool Execution Engine Execution Engine
(CPU) (GPU) (GPU)

C

lteration 2

28

Continuous Batching

* |teration 2: decode R1, R2, R3; receive R4, R5; R2 completes

Maximum serving batch

R4: A dog is Size =3

R1: optimizing ML
systems requires ML

R2: LLM serving is

critical. <EOS>

Request Pool Execution Engine
(CPU) (GPU)

C

lteration 2

29

Continuous Batching Step-by-Step

 |[teration 3: decode R1, R3, R4

R5: How are

Request Pool
(CPU)

Maximum serving batch
size = 3

R1: optimizing ML
systems

R4: Adogis

Execution Engine
(GPU)

C

lteration 3

30

Summary: Continuous Batching

* Handle early-finished and late-arrived requests more efficiently
* Improve GPU utilization
®* Key observation

* MLP kernels are agnostic to the sequence dimension

KV Cache

Output the future
Layer N Layer N
——————————————————————————— —\\
| Artificial | -02 | 04 | 1.1 i the [11 | 0.5
Intelligence| 0.9 0.7 0.2 |
s 01 | -03 | 0.1 |
KV Cache Layer 1 Layer 1
| Artificial [-01 | 03 | 12 | the [-0.7 | 0.1
'Intelligence| 0.7 -0.4 0.8 |
s 02 | 01 | 1.1 |

Input Artificial Intelligence, s the

Output

Input

KV Cache

KV Cache

- — —

/

/Artificial
Intelligence
IS
the

Artificial
Intelligence
\ IS

I
I
|
I
I
I
|
I
I
I
|
I
I
I
|
I
I
I
|
I
I

-0.2 0.1 -1.1
0.9 0.7 0.2
-0.1 -0.3 0.1
-1.1 0.5 0.4
-0.1 0.3 1.2
0.7 -0.4 0.8
0.2 -0.1 1.1
-0.7 0.1 -0.2

________________________/

— — — — — — — e — —— —— E—— E—— E— E—— — E— — — —

future

future

0.1

0.5

0.9

future

KV Cache

* Memory space to store infermediate vector representations of tfokens

* Working set rather than a “cache”

®* The size of KV Cache dynamically grows and shrinks

* A new token is appended in each step

®* Tokens are deleted once the sequence finishes

KV Cache

/
Artificial

Intelligence
is
the

Artificial

Intelligence
IS

-0.2

0.1

13

0.9

0.7

0.2

0.5

-0.1

-0.3

0.1

-1.1

0.5

0.4

-0.1

0.3

1.2

0.7

-0.4

0.8

/LaxTer 1

0.0

0.9

0.2

-0.1

1.1

\
< the

-0.7

0.1

-0.2

-

future

Key insight

Efficient management of KV cache is crucial for high-throughput

LLM serving
. Existing systems — vLLM
¢
)
O)
®
KV Cache 5
Parameters (13GB, 33%) %’
(26GB, 65%) =
= Param. 3 4IO |
size Batch size (# requests)

Others

13B LLM on A100-40GB

Key insight

Efficient management of KV cache is crucial for high-throughput

LLM servin
3 . Existing systems — vLLM
o
)
S
KV Cache 5
Parameters (13GB, 33%) -
(26GB, 65%) =
=
T
Others §§
o) 0
13B LLM on A100-40GB > ©
< 0.8

Batch size (# requests) 40

Memory waste In KV Cache

2 slots for
generated tokens

N

3 slots future used

(reserved)
N

- A
Artificial Intellige IS the future
nce
7
v |
3 token states for Request A

request A's prompt

current step

of

technol
ogy

<eosS-> <resv>

N)

2040 slots never used
(internal fragmentation)

External
fragmentation

~

LLM

IS

~
Request B

® Reservation: not used at the current step, but used In the future

* Internal fragmentatfion: over-allocated due to the unknown

output length.

Memory waste In KV Cache

. Internal External
B Token states ™ Reservation & fragmentation fragmentation

Alﬂﬂ 30

S

~ i 36.6

O 80 41.6

®))

P

S 60-

)

c

O 40 -

M

@)

> 20 -

A’

D' T

Orca Orca Orca Ours
(Max) (Pow2) (Oracle)

Only 20-40% of KV cache is utilized to store token states

*Yu, G. 1., Jeong, J. S., Kim, G. W.,, Kim, S., Chun, B. G. "Orca: A Distributed Serving System for Transformer-Based
Generative Models™ (OSDI 22).

VLLM: Efficient memory management for LLM inference

Inspired by virtual memory and paging

Memory management in OS Memory management in vLLM
Page O Token Block O
Process Page 1 Process Request Token Block 1 Request
A Page 2 B A Token Block 2 B
Page 3 Token Block 3
Page 4 Token Block 4
Physical Memory KV Cache

Token block

* A fixed-size contiguous chunk of
memory that can store token states

from left to right

block O

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Token blocks
(KV Cache)

KV Cache

-~
Block size

1
1N

Token block

* A fixed-size configuous chunk of memory that can store token

Token blocks

states from left to right (KV Cache)
block O
block 1
block 2
Block 4 block 3
Artificial | -0.2 0.1 11 | 4 o0k 4
Intelligence| 0.9 0.7 0.2
i 0.1 0.3 0.1 block 5| Artificial |Intelligence IS the
the -1.1 0.5 0.4
N) block 6
Y
820 KB / token
(LLaMA-13B) block 7
N
y
Block size = 4

Paged Atftention

* An attention algorithm that allows for storing continuous keys

and values In hon-contiguous memory space

Key and value vectors

mathe-

Block 1 |computer| scientist and .
matician

Block 2 renowned for
Query

vector

for

Block 0 | Alan Turing IS a

block 0

block 1

block 2

block 3

Logical & physical token blocks

Prompt: “Alan Turing is a computer scientist”

Request

A

Logical token blocks

Alan

Turing

IS

computer

scientist

block O

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Physical token blocks
(KV Cache)

Logical & physical token blocks

Physical token blocks
(KV Cache)

Request block 0
A

block 1 | computer | scientist

Prompt: “Alan Turing is a computer scientist”

block 2

Logical token blocks Block table block 3

block O Alan Turing IS a \ bIO'ZEynSL(ﬁLer # Filled block 4
7 4

block 1 | computer | scientist block 5
T 1 2

block 2 — — block 6

block 3 block 7| Alan Turing is

Logical & physical token blocks

Physical token blocks
(KV Cache)

Request block 0
A

block 1 | computer | scientist

Prompt: “Alan Turing is a computer scientist”

Completion: “and’ block 2

Logical token blocks Block table block 3

block 0| Alan Turing is a \ bIO'ZEynSL(ﬁLer # Filled block 4

block 1 | computer | scientist ~_ : ;1 block 5

block 2 - - block 6
block 3 - : block 7| Alan Turing iS

Logical & physical token blocks

Physical token blocks
(KV Cache)

Request block 0
A

block 1 | computer | scientist

Prompt: “Alan Turing is a computer scientist”

Completion: “and’ block 2

Logical token blocks Block table block 3

block 0| Alan Turing is a \ bIO'ZEynSL(ﬁLer # Filled block 4

block 1 | computer | scientist and ~_ : ;1 block 5

block 2 - - block 6
block 3 - : block 7| Alan Turing iS

Logical & physical token blocks

Physical token blocks
(KV Cache)

Request block 0

A
block 1| computer scientist-

Prompt: “Alan Turing is a computer scientist”
Completion: “and” block 2
Logical token blocks Block table block 3
. : Physical :
block O Alan Turing IS a \ block number | Filled block 4
7 4
block 1 | computer | scientist - block 5
T 1 3
block 2 = - block 6
block 3 block 7| Alan Turing is

Logical & physical token blocks

Physical token blocks
(KV Cache)

Request block 0
A

mathem

block 1| computer | scientist| and .
atician

Prompt: “Alan Turing is a computer scientist”

Completion: “and mathematician” block 2

Logical token blocks Block table block 3

block 0| Alan Turing is a \ bIO'ZEynSL(ﬁLer # Filled block 4

block 1 | computer | scientist and mf:gi]:rr]na\ : j block 5

block 2 - - block 6
block 3 : - block 7| Alan Turing is a

Logical & physical token blocks

Request
A

Completion: “and mathematician renowned”

block 0

block 1

block 2

block 3

Logical token blocks

Prompt: “Alan Turing is a computer scientist”

RN
—

Alan Turing IS a
L mathema
computer | scientist and .
tician
renowned

Block table
Physical .
block number # Fllled
I 4
1 4
5 1

block O

block 1

block 2

block 3

o —— — — —

Physical token blocks

(KV Cache)
L mathem
computer | scientist| and .
atician
‘ Allocated on demand
renowned
Alan Turing IS a

Serving multiple requests

Request
A

Block Table

Logical token blocks

Alan Turing IS a
L mathema

computer | scientist and .
tician

Physical token blocks

Block Table

Request
B

Logical token blocks

Artificial

Intelligence

future

o ooty

(KV Cache)
L mathem
computer | scientist| and .
atician
. . | Intellige .
Artificial IS the
nce
future
Alan a

IS

the

Memory efficiency of VvLLM

* Minimal internal fragmentation
* Only happens at the last block of a sequence
* # wasted tokens / seq < block size

®* Seqgquence: O(100) — O(1000) tokens

® Block size: 16 or 32 tokens

. Alan Turing IS a
®* No external fragmentation e
computer scientist and cian
renowned
N J
Y

Internal fragmentation

Effectiveness of PagedAttention

. Internal External
B Token states ™8 Reservation Il fragmentation fragmentation

100 -

— 8.9

> 36.6

o 80 - 41.6 '

O)

%

5 60 -

()

C

O 40 -

©

O

> 20 -

A'd

D-

Orca Orca Orca Ours
(Max) (Pow2) (Oracle)

96.3% KV cache utilization

Other Inference Technigues

* Speculative Decoding
®* Disaggregated Serving
®* Prefix caching

* Chunked pretfill

	Slide 1: DSC 204A: Scalable Data Systems Fall 2025
	Slide 2: Logistics
	Slide 3: Connecting the Dots: Compute/Comm characteristic of LLMs
	Slide 4: Large Language Models
	Slide 5: Inference process of LLMs
	Slide 6: Generative LLM Inference: Autoregressive Decoding
	Slide 7: w/ KV Cache vs. w/o KV Cache
	Slide 8: w/ KV Cache vs. w/o KV Cache
	Slide 9: Potential Bottleneck of LLM Inference?
	Slide 10: Serving vs. Inference
	Slide 11: Potential Bottleneck of LLM Inference in Serving
	Slide 12: Potential Bottleneck of LLM Inference in Serving
	Slide 13: Problems of bs = 1
	Slide 14: Recap: Inference process of LLMs
	Slide 15: Problem of bs = 1
	Slide 16: Large Language Models
	Slide 17: LLM Decoding Timeline
	Slide 18: Batching Requests to Improve GPU Performance
	Slide 19: Continuous Batching
	Slide 20: Continuous Batching Step-by-Step
	Slide 21: Continuous Batching Step-by-Step
	Slide 22: Continuous Batching Step-by-Step
	Slide 23: Continuous Batching Step-by-Step
	Slide 24: Continuous Batching Step-by-Step
	Slide 25: Traditional Batching
	Slide 26: Continuous Batching
	Slide 27: Continuous Batching
	Slide 28: Traditional vs. Continuous Batching
	Slide 29: Continuous Batching
	Slide 30: Continuous Batching Step-by-Step
	Slide 31: Summary: Continuous Batching
	Slide 32: KV Cache
	Slide 33: KV Cache
	Slide 34: KV Cache
	Slide 35: Key insight
	Slide 36: Key insight
	Slide 37: Memory waste in KV Cache
	Slide 38: Memory waste in KV Cache
	Slide 39: vLLM: Efficient memory management for LLM inference
	Slide 40: Token block
	Slide 41: Token block
	Slide 42: Paged Attention
	Slide 43: Logical & physical token blocks
	Slide 44: Logical & physical token blocks
	Slide 45: Logical & physical token blocks
	Slide 46: Logical & physical token blocks
	Slide 47: Logical & physical token blocks
	Slide 48: Logical & physical token blocks
	Slide 49: Logical & physical token blocks
	Slide 50: Serving multiple requests
	Slide 51: Memory efficiency of vLLM
	Slide 52: Effectiveness of PagedAttention
	Slide 53: Other Inference Techniques

